
Towards Efficient and Scalable Computer Vision Systems

by

Mohamed A. Helala

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Faculty of Graduate Studies (Computer Science)
University of Ontario Institute of Technology

Supervisor(s): Ken Q. Pu and Faisal Z. Qureshi

Copyright © 2018 by Mohamed A. Helala

Contents

1 Introduction 3

1.1 Problem Statement . 6

1.1.1 Stream Algebra . 7

1.1.2 Building Efficient Online Algorithms 8

1.2 Contributions . 12

1.3 List of Publications . 15

Introduction 16

2 Background 17

2.1 Stream Algebra . 17

2.1.1 Feedback Control in Data-Stream Systems 21

2.2 Computer Vision Functionals . 23

2.2.1 Stereo Vision . 23

2.2.2 Optical Flow . 28

2.2.3 Road-Boundary Detection in Traffic-Video Surveillance 31

2.3 Parameter Tuning . 33

3 Scalable Computer Vision Systems 36

3.1 Stream Algebra . 37

3.1.1 Notation . 37

ii

3.1.2 First-order Operators . 39

3.1.3 Rate-control Operators . 42

3.1.4 Higher-order Operators . 43

3.1.5 Examples . 46

3.2 Feedback Control for Streaming Computer Vision Pipelines 54

3.2.1 Algebraic Description of Feedback Control 54

3.2.2 Examples . 57

3.3 Discussion . 69

3.4 Algebra Implementation . 76

3.4.1 Algebra Implementation in Go Language 76

3.4.2 Building Pipelines Using the Algebra Implementation 83

4 Efficient Computer Vision Functionals: Pixel Labelling 87

4.1 Introducing Pixel-Labelling Problems . 89

4.2 Cost-Volume Filtering . 91

4.2.1 Curse of the Label Search Space . 92

4.2.2 Efficient Traversal of Large and Continuous Label Spaces 94

4.3 Selecting Salient Sub-volumes . 95

4.3.1 Feature-based Sub-volumes . 96

4.3.2 Segmentation-based Sub-volumes . 98

4.4 Coarse-to-fine Sub-volumes . 101

4.5 Patch-Match for Sub-volume Filtering . 102

4.5.1 Algorithm . 103

4.5.2 Complexity Analysis . 104

4.6 Occlusion Handling and Gap Filling . 105

4.7 Applications . 110

4.7.1 Stereo Vision . 110

4.7.2 Optical Flow . 111

iii

4.8 Experimental Results . 113

4.8.1 Stereo Vision . 113

4.8.2 Optical Flow . 123

4.9 Limitations . 130

4.10 Concurrent Streaming Implementation . 131

5 Efficient Computer Vision Functionals: Traffic Surveillance 143

5.1 Road-boundary Detection . 147

5.1.1 Superpixel Segmentation . 149

5.1.2 Contour Approximation . 150

5.1.3 Online Hierarchical Clustering . 152

5.1.4 Confidence Assignment . 156

5.1.5 Pairwise Ranking . 165

5.2 Experimental Results . 166

5.2.1 Dataset 1 . 167

5.2.2 Dataset 2 . 170

5.2.3 Sensitivity Analysis . 171

5.3 Discussion . 172

5.4 Concurrent Streaming Implementation . 174

5.4.1 Description Using Algebra . 175

5.4.2 Implementation . 182

6 Performance Tuning of Large-Scale Computer Vision Systems 191

6.1 Problem Statement . 193

6.2 Feedback Control Using Time-Bounded Sequential Parameter Optimization195

6.3 Experimental Results . 198

6.3.1 Case Study . 198

6.3.2 Experimental Evaluation . 200

iv

6.3.3 Discussion . 203

7 Conclusion 206

7.1 Summary of Contributions . 206

7.2 Future Directions . 208

Appendix A Supplementary Materials For the Sparse Cost-volume Filter-

ing Approach 213

Appendix B Gaussian-Process Regression 227

Appendix C Go Code for the Algebra Implementation 230

C.1 alg.go . 230

C.2 exgraph.go . 257

C.3 messages.go . 265

C.4 consts.go . 269

Bibliography 270

v

1

Abstract

Towards Efficient and Scalable Computer Vision Systems

Mohamed A. Helala

Doctor of Philosophy

Faculty of Graduate Studies

University of Ontario Institute of Technology

2018

There is a large growth in hardware and software systems capable of producing vast

amounts of image and video data. These systems are rich sources of continuous and

possibly infinite image and video streams. This motivates researchers to build scalable

computer vision systems that utilize data-streaming concepts for large-scale processing

of visual data streams. However, several challenges still exist in building large-scale com-

puter vision systems. The main challenge is the lack of formal and scalable mechanisms

and frameworks for building and optimizing large-scale visual processing. Moreover, sev-

eral fundamental computer vision tasks are computationally expensive and inefficient for

scaling up for large-scale processing. This thesis presents formal methods and algorithms

that aim to overcome these challenges and improve building and optimizing large-scale

computer vision systems.

We first describe a formal algebra framework for the mathematical description of

computer vision pipelines for processing image and video streams. The algebra defines a

set of abstract and concurrent operators with well-defined semantics for building scalable

computer vision systems. It naturally describes feedback control and provides a formal

and abstract method for data-stream manipulation, adaptive parameter selection, dy-

namic reconfiguration, incremental optimization, and defining common optimization and

cost models.

Second, we present new algorithms for efficiently processing image and video streams

2

in two areas of computer vision: pixel-labelling problems and automatic visual surveil-

lance. For pixel-labelling problems, we develop the sub-volume cost-filtering approach

for solving both stereo-vision and optical-flow problems. The approach leverages sparse

processing of the cost volume to achieve faster runtimes with comparable accuracy to the

state-of-the-art algorithms. For automatic visual surveillance, we develop a new online

algorithm for automatic lane and road-boundary detection. The algorithm runs in real

time and is adaptive and able to handle several challenging environmental conditions.

Finally, we express the road-boundary detection algorithm using our stream algebra.

We use it as a case study for developing common optimization methods for parameter

tuning in large-scale streaming pipelines.

Chapter 1

Introduction

Nowadays, our ability to generate images and videos has dramatically increased with the

ubiquitous access to camera-equipped devices, such as smartphones and tablets. This

created an increasing trend in recording personal memories and visually sharing stories,

especially in social network platforms, such as YouTube 1 and Instagram. 2 We can

anticipate that this trend will continue to increase in the future.

This huge growth of visual content motivates researchers to build systems that support

web-scale computer vision by building scalable algorithms. The target is to process and

analyze a vast amount of visual content as long-lasting streams. Such streams include

image and video sequences (possibly infinite) from traffic-camera networks, vehicular

vision systems, and vision-based Internet-of-things systems [188, 128, 178, 119]. We refer

to this family of data streams as vision streams.

Moreover, many classical vision problems, such as tracking, object detection, object

counting, edge detection, background modelling, etc., can be cast within the stream-

processing framework. Online vision algorithms can be implemented as stream-processing

functions. There are also several recent algorithms [145, 123, 175, 119, 72, 176, 105]

that applied data-streaming concepts to efficiently solve different computer vision prob-

1YouTube: https://www.youtube.com/ (last accessed on 7 September 2017).
2Instagram: https://www.instagram.com/ (last accessed on 7 September 2017).

3

Chapter 1. Introduction 4

lems. Examples of online algorithms that deal with streams of images and video include

streaming hierarchical video segmentation [175], photo stream alignment [176], human

body segmentation [72], storyline inference from web photo streams [105], human activity

prediction from video streams [145], and analysis of traffic-video streams [81].

Managing and processing data streams has been an active topic in the field of database

and information systems [3, 29, 168, 13, 8]. However, most data-stream research has

been focused on streams of textual, numerical, and semi-structured data. Consequently,

the resulting stream-processing systems have been built and optimized for text-stream

processing by relying on and extending database operators (such as relational algebraic

operators and related analytical methods). To efficiently process textual data streams,

the database community developed stream-algebra frameworks [52, 38, 43, 55]. Stream

algebra extends relational algebras for data-stream processing and provides a formal

language for mathematically defining workflow graphs. It defines a set of abstract and

concurrent operators that take data streams as their operands to produce output streams.

The operators have formal semantics to declare and construct streaming workflows as

mathematical expressions.

Several platforms have been developed by building upon and extending stream al-

gebras. Examples of such platforms include Apache Storm [12], Amazon Kinesis [107],

Apache Kafka [10], and Spark Streaming [11]. The success of these platforms comes

from their ability to intelligently process vast amounts of streams and adapt to changes

in computational resources. These platforms process data streams in an online fashion.

Apache Storm [12] is an example of a distributed computation system for processing

large-scale data streams. It is fault-tolerant and scalable with a guarantee of data pro-

cessing. Storm [12] defines a pipeline as a directed graph topology with Spout operators

and Bolt operators. A Spout reads data tuples from a given source and submits them to

Bolts. A Bolt is a generic data-processing operator that receives multiple input streams

and submits multiple output streams. Storm provides the Trident API that implements

Chapter 1. Introduction 5

a set of streaming extensions of the relational algebra operators on top of the Bolt and

Spout concepts of Storm. The Amazon Kinesis [107] platform can acquire and process

data streams in real time from thousands of different web sources at a data rate of several

terabytes per hour. It also can integrate with streaming frameworks, such as Storm, for

stream processing. Apache Kafka [10] is a distributed messaging system that can read

and write streams. It can be used to write scalable stream-processing pipelines for real-

time data processing. Kafka also stores streams and replicates them for fault tolerance.

It also provides a domain-specific language that extends relational algebra operators for

data-stream processing. Spark Streaming [11] allows scalable and fault-tolerant real-time

stream processing. It receives data streams and splits them into batches that are pro-

cessed in parallel using a set of stream-processing operators, extending the relational

algebra.

These large-scale processing platforms provide different implementations of the database

stream-algebra frameworks and are optimized for processing textual streams. However,

researchers in computer vision have tried to utilize these platforms for processing vision

streams. For example, Yu et al. [180] developed a video parsing and evaluation platform

using Spark Streaming and Kafka for processing long surveillance videos. In this platform,

users write computer vision processing modules using Spark Streaming, and Kafka is used

for communicating messages between different modules. Tabernik et al. [158] developed a

web service for object detection using hierarchical models. Their method is implemented

as a pipeline in Storm using custom-built Spouts and Bolts. Zhang et al. [183] developed

a system architecture for online surveillance-video processing based on Kafka and Spark

streaming. In this system, users can write video tasks that process blocks of video data.

Despite these efforts to customize text-stream-processing platforms for computer vi-

sion, there are still several problems in building large-scale computer vision systems.

These problems stem from the nature of image and video streams and the complexity of

computer vision algorithms. Vision streams are more complex than text streams. They

Chapter 1. Introduction 6

usually have high dimensional features, complex/multi-modal data, and a wide range

of noisy samples. This induces a very large number of intermediate results generated

by computer vision tasks in large-scale systems, thus creating large latencies in moving

data in a distributed system. Moreover, computer vision tasks deal with different types

of videos and images, such as binary images, images with different colour models, and

videos with different frame rates, environments, illuminations, etc. To deal with these dif-

ferent conditions, a computer vision task can be implemented using different algorithms

with different accuracy and speed profiles depending on the content, type, and speed of

incoming data. Thus, a large-scale computer vision system should enable dynamic recon-

figuration of the system to switch between different runtime profiles to match changes

in incoming streams. In addition, computer vision algorithms usually require a larger

number of input parameters than text-stream-processing algorithms. It is not clear how

to adaptively tune this large number of parameters in large-scale systems to dynamically

adapt to changes in content, type, and speed of incoming vision streams. These problems

suggest that a formal framework is needed to solve the challenges of large-scale processing

of vision streams.

Building large-scale visual processing systems also requires scalable and efficient com-

puter vision algorithms. Although several vision algorithms can be executed in an online

fashion, many computationally expensive algorithms cannot. Examples of these algo-

rithms include scale-invariant feature transform (SIFT) keypoint extraction [118, 116]

and dense labelling problems, such as optical flow and stereo vision [143, 170].

1.1 Problem Statement

This thesis addresses two main problems: (1) building formal, scalable, and efficient

easy-to-use mechanisms and frameworks for building and optimizing large-scale visual

processing and (2) accelerating existing computationally expensive computer vision al-

Chapter 1. Introduction 7

gorithms while achieving accuracy comparable to the state of the art. The first problem

stems from the fact that there is no formal data-stream processing framework for com-

puter vision. We are interested in the stream-processing approach, which is an emerging

direction for big visual data analysis. The second problem focuses on developing efficient

algorithms for computationally expensive computer vision algorithms. In this work, we

address pixel-labelling problems and traffic-video analysis to accelerate their performance

for large-scale stream processing.

1.1.1 Stream Algebra

Building formal stream-algebra frameworks has been addressed in the database commu-

nity [52, 38, 43, 55] for efficiently processing textual data streams. A stream algebra

is a formal language for mathematically defining workflow graphs. It defines a set of

abstract and concurrent operators that take data streams as their operands to produce

output streams. The operators have formal semantics to declare and construct streaming

workflows as mathematical expressions. Stream algebras exist in the database literature

to provide an effective description of queries on event or relational streams. They provide

a framework for query analysis and optimization. These algebras bring several advan-

tages, such as providing a formal and abstract method for data-stream manipulation,

resolving blocking operations, scheduling asynchronous and bulk-wise processing tasks,

implementing dynamic execution plans, applying incremental evaluation, scaling up data

processing, and defining common pipeline optimization and cost models.

Moreover, one of the most important building blocks for pipeline optimization is

feedback control, which allows the implementation of tasks, such as parameter tuning

and incremental optimization. Stream algebras have the benefit of formally defining

feedback-control loops. Broy et al. [38] defined streaming pipelines as data-flow networks

and proposed a feedback operator to describe feedback loops. Although this operator was

theoretically defined, the same concept has been used as a guideline for applying feed-

Chapter 1. Introduction 8

back control in database systems [102, 114, 164, 165, 100, 84]. Kapitanova et al. [102]

developed a formal specification language that models queries on textual data streams.

They also used feedback-control primitives to provide quality of service (QoS) manage-

ment mechanisms in data-streaming systems. Yi et al. [164] applied feedback control to

satisfy quality requirements for processing continuous queries in a data-stream manage-

ment system by controlling the application behaviour in situations such as an overloaded

system. These examples show that having a stream algebra with a formal set of stream-

ing operators is necessary to efficiently develop common optimization methods. may be

useful for efficiently developing common optimization methods.

The key performance metrics for streaming workflows are throughput and latency [26,

25, 24]. The throughput measures the rate at which data tuples enter or exit a system.

Equivalently, the period is the inverse of throughput, and it measures the interval between

the system entry times of two consecutive tuples. The latency is the interval between the

system entry and exit times for a given tuple, so it measures the overall response time

of the system in processing the tuple. Data tuples may have different latencies hence

the maximum response time defines the system latency. Although a stream algebra can

mathematically define a given streaming workflow, the aim is to construct a mathematical

expression that provides an efficient execution plan. So, it is naturally desirable to define

mathematical expressions that minimize latency and maximize throughput; however, the

two criteria are opposite to each other, and one should find a good trade-off.

1.1.2 Building Efficient Online Algorithms

There is currently progress in developing online computer vision pipelines [145, 123, 175,

119, 72, 176, 105] that manipulate vision streams. These applications span several areas,

such as analysis of web photo collections, activity recognition, surveillance cameras, and

satellite imagery. For example, Schuster et al. [148] proposed a method for real-time

detection of unusual regions in surveillance-video streams. The method partitions each

Chapter 1. Introduction 9

image and extracts a local model for each partition. Then, the model is continuously

updated toward scene changes by applying several heuristic rules. The method was

applied to guide camera operators to areas of attention.

Gunhee et al. [70] proposed another method for multiple foreground segmentation of

similar objects within an image stream. This method oversegments each image into a

set of segments, which are grouped using an iterative scheme into a k-region foreground

model. The algorithm was tested on Flickr photo streams and the ImageNet dataset and

showed promising results.

Cao et al. [42] proposed a method for recognizing human activities from video streams

in which part of the activities are missing. They cast the problem as a probabilistic

framework and used sparse coding to calculate the likelihood of a test video belonging

to a certain activity.

Ryoo [145] also presented a recent algorithm that can predict the type of activity early

that is happening between two humans in an input video stream. They addressed six

human activities: hand shaking, hugging, kicking, pointing, punching, and pushing. The

algorithm operates in two main stages, an offline learning stage, and an online prediction

stage.

Kim et al. [105] proposed an algorithm to build common storylines from Flickr photo

streams and to discover the relations between them. Their method jointly aligns and

segments large-scale web photo streams by applying message-passing-based optimization.

Xuand et al. [175] also proposed a recent streaming framework that approximates full

video hierarchical segmentation to work in a constant memory space. Their algorithm

works in a feedforward streaming fashion by dividing an input video stream into a set

of clips. Then, for each clip, a segmentation hierarchy is generated using an automatic

semi-supervised method that uses a Markovian assumption to relate the current hierarchy

to the previous one.

Despite the previous progress in developing online vision algorithms, there are also

Chapter 1. Introduction 10

challenges resulting from user-defined vision algorithms. For example, the algorithms can

have unpredictable or high processing rates based on the input size and content, which

causes some algorithms to employ different approximations to support real-time require-

ments. Many algorithms also have several runtime parameters, which are selected by

isolated experimental evaluations, and usually lack runtime tuning when integrated into

other algorithms. Another important challenge is the need to design vision algorithms

for heterogeneous hardware platforms (mobile to heterogeneous hardware processors),

which makes the algorithms hard to debug and extend.

In computer vision, an example set of problems that face the previous challenges are

pixel-labelling problems. These problems define several fundamental computer vision

operations that include stereo vision, optical flow, and image segmentation. A pixel-

labelling problem takes a set of labels LL and a set of pixels P as input. An assignment

cost is then calculated for assigning each pixel p ∈ P to a label l ∈ LL. This defines a

3D cost volume with depth ∣LL∣ and each slice l ∈ LL has the assignment costs of l to

pixels in P . The problem is then to find the best assignment that minimizes the total

assignment cost.

In the case of stereo vision and optical flow, the set P defines a pair of input images,

whereas the set LL defines a range of disparities and displacements, respectively. The

disparity is defined as the distance between two corresponding pixels in the left and right

images of a stereo pair. For image segmentation, the aim is to partition an image into

a set of segments that are known as superpixels. In its simple case, P defines a single-

input image, and LL is binary with two labels for defining foreground and background

regions. For the task of semantic image segmentation [187], LL represents multiple labels

corresponding to different object classes in the scene. Oftentimes, accurate subpixels

aresubpixel accuracy is required for optical flow and stereo vision, which makes the label

space size very large and requires efficient processing.

Moreover, dealing with large-displacement labels requires expanding the label space,

Chapter 1. Introduction 11

which further increases the size of the cost volume. This makes current accurate algo-

rithms for stereo vision [23, 91, 122] and optical flow [170, 15, 143, 60, 18] slow and

inefficient for online processing of vision streams.

However, much research has been done to accelerate performance. For example,

Bao et al. [18] developed a fast hardware-accelerated algorithm for optical flow, but at

the cost of sacrificing accuracy. This makes their approach unusable in many cases where

accurate optical flow is required.

FlowNet [60] is another method that uses deep learning and hardware acceleration to

post runtime performance. FlowNet requires a large set of training images with ground

truth, which, as indicated by [60], is difficult to obtain in practice. This lack of training

data results in the inability of the learned model to generalize on different datasets. We

envision that an online algorithm for solving pixel-labelling problems should leverage

sparse processing of cost volume to achieve faster runtimes, have comparable accuracy to

the state of the art, and be able to trade off accuracy for speed to handle unpredictable

or high processing rates.

Automatic visual surveillance is another area of computer vision with similar chal-

lenges. It is not surprising that traffic cameras are being installed in increasing numbers

on roads and highways in and around big urban centres. This trend for installing and

using traffic cameras will continue, and the number of traffic cameras will continue to

increase. Such trends cause the data collected by the smart cameras to experience un-

precedented growth and require automated techniques for consuming and analyzing this

data. Automatic detection of road boundaries is a fundamental task in automatic visual

surveillance and can greatly help subsequent traffic-analysis tasks, such as determining

vehicle flow, erratic driving, stranded vehicles, etc.

However, developing online algorithms for this task is challenging due to the different

environmental and lighting conditions in incoming video streams (e.g., unlit highways

captured at night). For example, recently, Kong et al. [109] developed a method for

Chapter 1. Introduction 12

detecting road boundaries using Gabor filters; however, the method is slow and has

a degraded accuracy when dealing with noisy images from challenging environmental

conditions.

Brust et al. [39] developed a deep learning-based scheme (CN24) for automatically

detecting road boundaries. The CN24 scheme computes a confidence map that assigns the

likelihood of belonging to the road region to each pixel. Still, CN24 has slow runtime and

performs poorly on some traffic scenes with challenging environmental conditions. We

think that future algorithms for automatic visual surveillance should be online, adaptive,

and able to handle different environmental conditions in incoming traffic-video streams.

1.2 Contributions

This thesis has threefour main contributions. First, we develop a stream-algebra frame-

work for manipulating vision streams, which can be used to mathematically describe the

pipelines of several state-of-the-art techniques in computer vision. To our knowledge,

we are the first to propose this algebra for computer vision tasks. The algebra has a

common notation and defines a set of concurrent algebraic operators that provide a new

abstraction for computer vision operations and can be used to build scalable computer

vision pipelines. The developed algebra extends the algebra frameworks in databases and

provides operators for controlling data flow rates. It also provides a natural description

of feedback control, which is the fundamental task for several advanced optimizations,

such as adaptive optimization and parameter tuning.

Second, we develop new algorithms for efficiently processing image and video streams

in two areas of computer vision: pixel-labelling problems and automatic visual surveil-

lance. For pixel-labelling problems, we develop the sub-volume cost-filtering approach

for solving both stereo-vision and optical-flow problems. The approach leverages sparse

processing of cost volume to achieve faster runtimes with comparable accuracy to the

Chapter 1. Introduction 13

state-of-the-art algorithms. For automatic visual surveillance, we develop a new online

algorithm for automatic lane and road-boundary detection. The algorithm runs in real

time and is adaptive and able to handle several challenging environmental conditions.

It outperforms other state-of-the-art approaches for automatic lane and road-boundary

detection.

Third, we describe an implementation of the stream algebra and use the developed

computer vision algorithms as case studies. Each algorithm is described as a streaming

workflow and implemented using our algebraic operators. A throughput versus latency

analysis is also performed to show the performance gains that the algebra provides to

each developed workflow.

Finally, we representuse the streaming workflow of our automatic lane and road-

boundary detection algorithm using our stream algebra and use the workflow as a case

study for developing common optimization methods for parameter tuning of large-scale

pipelines. We show that the feedback primitives of the developed stream algebra can

effectively implement and scale the sequential model-based optimization methods [95, 94,

21, 96] for parameter tuning of the stream-processing functions in large-scale computer

vision pipelines.

The rest of the thesis is organized as follows. Chapter 2 gives a brief overview of the ex-

isting work on data-stream processing algebras and systems. It also discusses the current

approaches for solving pixel-labelling problems and automatic road-boundary detection.

A summary of general parameter-tuning algorithms is also given. Chapter 3 presents our

stream-algebra formulation for computer vision streaming pipelines and shows how it can

efficiently describe several state-of-the-art techniques in computer vision. The chapter

also presents the feedback-control primitives of our algebra and its powerful description

of state-of-the-art computer vision algorithms implementing adaptive optimization and

parameter tuning. Chapter 4 presents our online algorithms for solving pixel-labelling

problems and automatically detecting road boundaries from input video streams. We

Chapter 1. Introduction 14

refer to these algorithms as algebra functionals and present several results that show

the efficiency of the algorithms in processing image and video streams while maintaining

accuracy comparable to the state of the art. Chapter 6 shows a case study that imple-

ments our road-boundary detection algorithm using the algebra framework. The chapter

also presents our general parameter-tuning algorithm for online computer vision systems

and presents several results that demonstrate its effectiveness. Chapter 7 summarizes

our most important findings and offers a discussion of the most promising directions for

improving our work.

Chapter 1. Introduction 15

1.3 List of Publications

The work presented in this thesis has appeared in the following conference and journal

publications:

1. Fast Estimation of Large Displacement Optical Flow Using Dominant Motion Pat-

terns & Sub-Volume PatchMatch Filtering, Mohamed A. Helala, Faisal Z. Qureshi,

14th Conference on Computer and Robot Vision (CRV), Edmonton, Alberta, Canada,

May 2017 (Best Paper Award).

2. A Formal Algebra Implementation for Distributed Image and Video Stream Pro-

cessing, Mohamed A. Helala, Ken Q. Pu, Faisal Z. Qureshi, Proc. 10th ACM/IEEE

International Conference on Distributed Smart Cameras (ICDSC), Paris, France,

September 2016.

3. Automatic Parsing of Lane and Road Boundaries in Challenging Traffic Scenes,

Mohamed A. Helala, Faisal Z. Qureshi, Ken Q. Pu, SPIE Journal of Electronic

Imaging, 2015.

4. Accelerating Cost Volume Filtering Using Salient Subvolumes and Robust Occlu-

sion Handling, Mohamed A. Helala, Faisal Z. Qureshi, 12th Asian Conference on

Computer Vision (ACCV), Singapore, Nov. 2014.

5. Towards Efficient Feedback Control in Streaming Computer Vision Pipelines, Mo-

hamed A. Helala, Ken Q. Pu, Faisal Z. Qureshi, 2nd Workshop on User-Centered

Computer Vision (UCCV) in conjunction with Asian Conference on Computer Vi-

sion (ACCV) 2014, Singapore, Nov. 2014.

6. A Stream Algebra for Computer Vision Pipelines, Mohamed A. Helala, Ken Q. Pu,

Faisal Z. Qureshi, 2nd Workshop on Web-scale Vision and Social Media (VSM) in

conjunction with CVPR 2014, Columbus, Ohio, June. 2014.

Chapter 1. Introduction 16

7. Road Boundary Detection in Challenging Scenarios, Mohamed A. Helala, Ken Q.

Pu, Faisal Z. Qureshi, Proc. 9th IEEE International Conference on Advanced Video

and Signal-Based Surveillance (AVSS), Beijing, China, Sept. 2012.

The following publications are a result of the work carried out during the course of

my doctoral studies. We chose not to include these works in this thesis:

1. Constructing Image Mosaics Using Focus Based Depth Analysis, Mohamed A.

Helala, Faisal Z. Qureshi, IEEE Winter Conference on Applications of Computer

Vision (WACV), Lake Placid, NY, USA, March 2016.

2. Mosaic of Near Ground UAV Videos Under Parallax Effects, Mohamed A. Helala,

Luis A. Zarrabeitia, Faisal Z. Qureshi, Proc. 6th ACM/IEEE International Con-

ference on Distributed Smart Cameras (ICDSC), Hong Kong, China, Oct. 2012.

Chapter 2

Background

2.1 Stream Algebra

Communicating sequential processes (CSPs) [88] is one of the early defined formal lan-

guages for algebraic description of communication patterns in concurrent systems. It

is the parent language that is extended by all database stream-algebra frameworks [52,

38, 43, 55]. In addition, CSP belongs to a general mathematical framework of concur-

rency known as process algebra. In CSP, systems are described using their component

processes with the assumption that they work independently and concurrently. Each in-

dependent process either runs sequentially or is composed of other concurrent primitive

processes. Processes then interact with each other using the process algebra operators.

A simple example of a CSP is a pipe, or pipeline, which defines a sequence of processes.

Each process receives inputs only from its predecessor and produces outputs only to its

successor.

The process algebra notation of CSP defines two main primitives: events and primitive

processes.

Definition 2.1.1 (Primitive Process) A primitive processes P represents fundamen-

tal operations or behaviours.

17

Chapter 2. Background 18

Example 2.1.2 STOP and SKIP are two popular CSP primitive processes. STOP is

the process that communicates nothing, and SKIP is the process that signals successful

termination.

Definition 2.1.3 (Events) In terms of concurrency, events represent communication

between processes and are described by a pair c.v, where c is the communication channel

and v is the message passed.

Example 2.1.4 The equation αc(P) = {v∣c.v ∈ αP} defines the set of all messages v

that can be communicated to process P on channel c, where αP defines all messages that

must be created before engaging process P .

Moreover, CSP also defines a set of algebraic operators that mathematically define

the permissible methods for constructing concurrent systems using events and prim-

itive processes. The operators include Prefix, InterfaceParallel, Interleaving, Hiding,

Deterministic-Choice, and Nondeterministic-Choice.

Definition 2.1.5 (Prefix) (x→ P). This operator combines one or more events and a

process to form a new process. For example, the new process (x → P) specifies that the

event x must first occur before engaging process P .

Definition 2.1.6 (InterfaceParallel) P ∣∣{a}∣∣Q. This operator specifies that both pro-

cesses P and Q run concurrently and can synchronously engage in event a.

Definition 2.1.7 (Interleaving) P ∣∣∣Q. This operator represents the interleaving form

of concurrency, where the two processes P and Q accept the same input, and their exe-

cution is arbitrarily and concurrently interleaved. We alternate the communication over

either channel P or channel Q, whichever is first available.

Definition 2.1.8 (Hiding) P /{c}. Given a process P that accepts a set of events, the

Hide operator drives an abstraction of P such that the environment observes one or more

Chapter 2. Background 19

input events c and returns an abstract process representing the activities following c in

P . For example, if P = (c → STOP∣d → a → STOP), then P /{d} = (a → STOP), where ∣

is the Boolean or operator.

Definition 2.1.9 (Deterministic-Choice) (a → P) ◻ (b → Q). This is a composite

operator that allows the environment to choose between two component processes. Given

an initial event, the environment resolves the choice by selecting the process that can

engage the event.

Example 2.1.10 The process (a→ P)◻(b→ Q) is a process that can accept either event

a or b and communicate to its corresponding component process (a → P) or (b → Q),

respectively. If both component processes can accept the same input, the choice is resolved

nondeterministically.

Definition 2.1.11 (Nondeterministic-Choice) (a → P) ⊔ (a → Q). This operator

allows the choice between two component processes similar to the Deterministic-Choice;

however, the processes must have the same input events, and the choice is made arbitrarily

without any control from the environment.

The CSP operators define a formal syntax for writing legal CSP expressions. They also

provide a mathematical framework for describing and analyzing large-scale concurrent

systems. This framework influenced the design of several programming languages, such

as the Go language. 1 It was also used to describe and verify the concurrency patterns

of several industrial systems [20].

Building upon the concepts of CSP, the database community formulated algebra

frameworks [52, 38, 43, 55] for processing and manipulating data streams using the con-

cepts of stream processing, such as pipelines. In such cases, a data stream represents

a finite or infinite sequence of data items or tuples, and a pipeline is a chain of pro-

cesses running concurrently with the output of each process used as the input of the

1Go language: https://golang.org/ (last accessed on 7 September 2017).

Chapter 2. Background 20

next process. For example, Broy et al. [38] used data-flow networks to model concurrent

computation of data-streaming pipelines. They studied the algebra of data-flow networks

by representing the streaming pipelines as a graph of stream-processing functions. Their

algebraic framework is deduced from basic network algebra (BNA) [152], which is a pop-

ular framework for representing data-flow networks using the calculus of flownomials.

This calculus is used to describe concurrency and behaviour of directed flowgraphs in

both deterministic (synchronous) and nondeterministic (asynchronous) cases. The core

of this algebra framework is a set of BNA operators interpreted using the semantics

of data-stream processing. In this algebra, a stream-processing function is defined as

follows:

Definition 2.1.12 (Stream-processing function) A stream-processing function (SPF)

is defined as

SPF(M)(a, b) = {f ∶Ma →Mb∣f is prefix continuous}, where M is a set of all data message

streams, and Ma ⊂M and Mb ⊂M are the sets of streams for channels of type a and b,

respectively. The function f is prefix continuous, meaning that it maintains stream order

and is monotonic.

Using this definition, the BNA constants and operators are defined using the semantics

of stream processing. We refer the reader to [38] for the definition of these operators.

Carlson and Lisper [43] presented an event algebra for detection of composite events in

reactive systems. Examples of reactive systems include real-time and embedded systems,

where execution is controlled by external events. These systems must detect events and

react to them with appropriate responses. The input to such systems in most cases

is a complex set of events referred to as complex events. The event algebra allowed

the description of such composite events, and a transformation algorithm is used to

convert the algebraic expressions into a form that can be processed by systems with

limited resources. The algebra includes five operators: (1) disjunction A ∨B, denoting

the occurrence of either event A or B; (2) conjunction A+B, denoting the occurrence of

Chapter 2. Background 21

both event A and B; (3) negation A−B, denoting the occurrence of A under no occurrence

of B; (4) sequence A;B, denoting the occurrence of B after A; (5) temporal restriction

Aτ , referring to the occurrence of event A for a number of times less than τ . Given a

composite event expression, the transformation algorithm converts the expression into

an event stream form that meets predefined bounds on computational resources.

Demers et al. [55] presented another algebra for processing arbitrary event streams.

The algebra has a data model for representing event streams and a set of operators for

processing and transforming streams. They defined a data stream as follows:

Definition 2.1.13 (Data stream) A data stream is an infinite set of events ⟨ā, t0, t1⟩,

where ā is a relation following the database relational model, t0 denotes the start time of

the event, and t1 is its end time.

The algebra operators include unary and binary operators. The unary operators are

only applied to the relation part of every event in the incoming stream to produce a

corresponding event in the output stream. The algebra also defined aggregate functions

used to process a sequence of events, as in SQL. They presented a case study that showed

the effectiveness of their algebra in describing and implementing queries over stock-quote

streams.

2.1.1 Feedback Control in Data-Stream Systems

Feedback control is a very important area in the field of control systems and has a wide

range of applications in several industrial plants. The main goal is to monitor and control

a process by inspecting its output and utilizing it as a feedback signal. This signal is

compared against the desired output using a controller that measures the error and feeds

it to the controlled process to adjust the output to the desired response. This type of

control system that uses a feedback signal to self-adjust its output is called a closed-loop

control system, also referred to as a feedback-control system [126].

Chapter 2. Background 22

Feedback-control systems can have one or more feedback loops. Such systems have

controlled processes that are univariate or multivariate [126]. Univariate processes have

a single controlled input variable (or parameter) and produce a single output variable.

Thus, only one feedback loop with a single controller is required to self-adjust the output

variable. The resulting control system in this case is referred to as a single-loop feedback-

control system. On the other hand, multivariate processes are typically found more often

in practice, where a process has multiple controlled input variables and produces one or

more output variables. Moreover, in more complex scenarios, a multivariate process may

have feedback signals coming from the outputs of other processes. To handle such cases,

the control system must have multiple feedback loops and is referred to in literature as

a multi-loop feedback-control system.

Feedback control is one of the main building blocks for optimizing data-streaming

pipelines. This enables tasks such as parameter tuning and incremental optimization.

The main benefits of database stream algebras are the ability to define common pipeline

optimization and the cost models. They can also define formal methods for implementing

dynamic execution plans and scaling up data processing. Feedback control can also be

described by database stream algebras.

Broy et al. [38] provided a theoretical definition of a feedback operator to describe

feedback loops. This work was extended to apply feedback control in database sys-

tems [102, 114, 164, 165, 100, 84]. Kapitanova et al. [102] developed a formal language

for modelling data-stream queries. They also applied feedback control to develop man-

agement mechanisms for QoS. Yi et al. [164] applied feedback control to maintain an ac-

ceptable QoS for continuous queries in stream-processing systems. Their method controls

and adapts the application behaviour in unstable system conditions. Examples of such

conditions include overloaded systems, where load shredding should be applied to ignore

some inputs to maintain the desired QoS. Yi et al. [165] extended the work by [164] by

applying feedback control to guide load shedding, while reducing the data-processing de-

Chapter 2. Background 23

lays in stream-processing systems. Li et al. [114] developed a feedback-control strategy to

schedule continuous and one-time queries executed under predefined timing constraints.

Their strategy minimizes the number of query deadline violations, while improving the

query quality. All these example methods build upon the concepts of database stream

algebra to efficiently use feedback control to optimize textual stream processing.

2.2 Computer Vision Functionals

There is a need for scalable and efficient computer vision algorithms to build large-scale

computer vision pipelines. However, several computer vision algorithms are computa-

tionally expensive. In this section, we review examples of computationally expensive

algorithms that include road-boundary detection in traffic surveillance and two applica-

tion areas of pixel-labelling problems, optical flow and stereo vision. As each application

has a large body of literature, we only focus on the methods relevant to our work.

2.2.1 Stereo Vision

Given a stereo image pair with a left image I1 and a right image I2, the task of stereo vision

is to assign each pixel p ∈ I1, a disparity or displacement that defines its corresponding

pixel p′ ∈ I2. The images are usually rectified by transforming and aligning them such

that corresponding pixels appear on the same row. So, the disparity is only estimated

along the horizontal axis. Stereo vision is usually formulated as pixel labelling problem

where an assignment function f ∶ P → L is defined to map each pixel in the set of image

pixels P , a label l ∈ L in the label space L that defines the disparity range. The solution

to this labelling problem is usually referred to as a disparity map.

In stereo vision, global energy minimization based on Markov random fields (MRFs)

is a popular approach for solving pixel-labelling problems. In this approach, the labelling

Chapter 2. Background 24

assignment energy is defined as,

E(f) = Ed(f) +Es(f), (2.1)

where Ed is a data cost energy that penalizes wrong label assignments, and Es is a

smoothness cost energy Es that penalizes the assignment of different labels to neighbour-

ing pixels. For example, Ben et al. [23] proposed a global energy minimization method

based on a variational framework. The method defines two coupled energy functionals for

both stereo matching and occlusion handling (OH). The data term for the stereo match-

ing energy uses a robust L1 norm to encode differences in colour and gradient, whereas the

smoothness term uses a total variation regularizer that encodes the difference in disparity

labels. The OH energy is formulated as a diffusion process and a separate minimization

process fills the occluded gaps.

Pal et al. [134] provided a similar idea by experimenting with different optimiza-

tion methods, such as belief propagation variational message passing [172], and graph

cuts [54]. They proposed the sparse variational message-passing method to reduce the

optimization time. However, the runtime is still over 100 seconds.

Taniai et al. [159] improved the efficiency of MRF inference for stereo vision using

graph cuts by introducing locally shared labels. The idea is to assign each pixel and

region a set of randomly initialized labels. Then, a disparity map is estimated by spatial

propagation and refinement. The method provides better accuracy than [134], however,

at a much higher computational cost.

The global optimization methods, however, do not scale well with large label spaces

usually found in stereo-vision and optical-flow problems. This motivated the development

of local stereo matching methods as fast, alternative techniques for solving pixel-labelling

problems. The early work of Yoon and Kweon [179] proposed a method for weighted-cost

aggregation by adaptively defining a support window for each pixel. For each window,

Chapter 2. Background 25

the weights of pixels are calculated by comparing the colour and spatial distance to the

centre pixel.

Cech et al. [45] proposed a global optimization method that processes a small fraction

of the disparity space to produce a semi-dense disparity map. Their method starts

by finding a set of correspondence seeds in the disparity space. Then seed growing

is performed by traversing seeds’ neighbouring disparities that provide the minimum

matching scores. The method achieved two orders of magnitude faster performance than

exhaustively searching the entire disparity space.

The global optimization methods, however, do not scale well with large label spaces

usually found in stereo-vision and optical-flow problems. Local stereo matching meth-

ods provide fast alternative techniques for solving pixel-labelling problems. Historically

speaking, local stereo matching methods appeared before the global optimization meth-

ods. These methods were summarized by Brown et al. [36] into three main categories: (1)

block matching, (2) feature matching, and (3) gradient-based optimization. The block

matching methods estimate the motion at a certain pixel by defining a patch around the

pixel and searching for corresponding patches in the other image [182, 28]. The gradient-

based optimization methods minimize a function that is typically chosen as the sum of

squared differences over a small local region [124]. The feature matching methods find

corresponding features between the given images [139, 30].

Hirschmuller et al. [86] proposed a real-time local stereo block matching method.

The method builds upon standard local window correlation that matches local windows

around pixels under the assumption that all pixels inside the matching window have the

same disparity. This assumption, however, fails at object borders. The method handles

this weakness by developing three extensions: (1) an approach for multiple supporting

window matching is developed to increase correct matches and reduce errors at object

borders, (2) an error filter is used to invalidate uncertain matches, (3) a post-processing

step is applied to perform border correction and improve object borders.

Chapter 2. Background 26

The early work of Yoon and Kweon [179] proposed a method for weighted-cost ag-

gregation by adaptively defining a support window for each pixel. For each window,

the weights of pixels are calculated by comparing the colour and spatial distance to the

centre pixel.

Several studies have been proposed based on the same idea, which includes the method

by Hosni et al. [90] (see surveys in [162] and [163]). However, the main limitation of this

early work is the large computational cost required to calculate weights and aggregate

costs with a complexity dependent on the matching window size.

The recent development of edge-aware filtering (EAF) methods [74, 136] provided

a fast and efficient alternative for cost filtering and aggregation. EAF performs image

filtering while maintaining the intensity changes and preserving the edges of a given guid-

ance image. Hosni et al. [91] proposed the cost-volume-filtering framework that applies

EAF to perform edge-aware smoothing of the assignment costs. The framework uses

the input image as the guidance image and efficiently applies EAF using that efficiently

uses the guided image filter [74] withthat has a complexity independent of the filter size.

Lu et al. [121] extended the work by further speeding up cost filtering and aggregation by

restricting the filter to a set of points in a shape-adaptive support window. Despite the

efficiency of local cost-volume-filtering methods against MRF global approaches, they

linearly scale with the label space size. This makes them unfeasible for handling the

large cost volumes usually found in high-resolution images and solutions with subpixel

accuracy.

Several recent studies have attempted to improve the computational time of cost-

volume filtering. Min et al. [131] reduced the complexity of cost aggregation for stereo

vision by introducing a histogram-based disparity pre-filtering scheme. This scheme

filters a restricted set of candidate disparities for each pixel. The complexity of weighted

filtering is also reduced by sampling the matching window. Although the method provides

better performance than [91], it traverses the entire cost volume to build the histogram.

Chapter 2. Background 27

Lu et al. [123] sped up filtering by integrating the PatchMatch randomized search

with EAF. The method uses superpixel segmentation for a compact representation of

image regions. Then, PatchMatch random search and propagation is applied at the

superpixel level to propagate and refine disparity labels. The speed increase results from

the sublinear complexity of PatchMatch in the label space size.

The framework of Anandan [7] is one of the early work in developing the coarse-

to-fine strategy for stereo matching. The framework starts by obtaining rough motion

estimates from a large-scale intensity image level. The estimates are then refined by

intensity information at smaller scales and propagated to the neighbouring pixel under

the smoothness constraint to produce the output disparity map.

Sizintsev et al. [150] proposed a coarse-to-fine refinement procedure that improves

binocular disparity estimates near 3D surface discontinuities. The approach builds upon

the standard coarse-to-fine block matching framework by adapting match window support

across scales to reduce errors in disparity estimates near boundaries. The approach is

also extended to handle regions with half-occlusions and colour uniformity.

Furuta et al. [63] proposed a coarse-to-fine strategy for cost-volume filtering to effi-

ciently handle large label spaces. Their method builds upon the idea that different scales

should have correlated labels. Thus, they use the disparity output at lower scales to

discard unimportant labels at the original scale.

Occlusion handling is also an important step for generating accurate disparity maps.

The idea is to fill the gaps found at mismatched locations. Several techniques have been

proposed for OH, for example, Sun et al. [156] developed a global energy minimization

method that fills occlusions such that the left and right images are visibly consistent. This

is performed by adding a term in the energy formulation that encourages smoothness in

filling occlusions or gaps.

Min et al. [132] handled occluded regions similarly by introducing an energy term and

applying an iterative optimization scheme for filling gaps. Yang et al. [177] proposed a

Chapter 2. Background 28

global energy minimization framework for stereo vision. The framework used an iterative

refinement step to fill occluded regions based on colour segmentation and plane fit. Ben-

Ari et al. [23] provided a similar energy minimization formulation with an energy term

for handling occluded regions, and a solution is obtained using iterative optimization.

Hosni et al. [91] handled occluded regions using a post-processing method. The method

traverses the disparity map row by row and fills occluded pixels by the smallest disparity

of the closest non-occluded pixels. This results in some undesired artifacts, which are

minimized by applying weighted-median filtering to obtain the output disparity map.

2.2.2 Optical Flow

For optical flow, we are also estimating displacements of pixels between two input images;

however, the displacements are 2D vectors representing motion in both horizontal and

vertical axes. A large body of literature for optical-flow estimation exists; thus, we only

focus on techniques relevant to our work dealing with large label spaces typically found

in high-resolution images and large-displacement optical flow. For a more comprehensive

survey, we refer the reader to [62].

The multiscale coarse-to-fine strategy is a popular method for dealing with large-

displacement optical-flow estimation [5]. This strategy constructs a multiscale pyramid

for the input images. Motion estimation starts at the coarse resolution that has the

slowest motion velocity. The labels are then propagated to finer resolution to obtain

more accurate motion flow. This strategy, however, cannot deal with small and thin

structures, which are usually lost at the coarse resolution.

To deal with this problem, Steinbruecker et al. [153] identified correspondences be-

tween input images. The method avoids the linearization formulation of optical-flow

introduced by Horn and Schunck [89] that is only valid for small motions. It also avoids

the need for coarse-to-fine warping of one image to another. However, finding correspon-

dences is expensive, which makes the method inefficient in handling large motion fields

Chapter 2. Background 29

found in large resolution images. Brox and Malik [37] applied keypoint matching within

a variational model to handle small and thin structures and handle large motion ranges.

Xu et al. [174] improved the method proposed in [37] by incorporating a series of discrete

fusion moves.

Weinzaepfel et al. [170] proposed DeepFlow, which relies on dense feature matching

to deal with large-displacement optical-flow estimation. DeepFlow uses DeepMatching,

which has O(M2) space and time complexity, where M is the number of pixels [142]. It

therefore requires several more orders of magnitude of memory than other state-of-the-art

methods.

The PCA-layers method developed by Wulff et al. [173] provided an efficient algorithm

that relies on an offline learning stage to estimate a principal component analysis (PCA)

model from sparse feature matches. A dense optical flow is estimated from a layered flow

model that uses sparse matches and the learned PCA model.

Yang et al. [99] also provided a more accurate algorithm that uses piecewise homog-

raphy models to estimate optical flow. The algorithm shows improvements regarding

non-translational motions with strong projections, however, at a large computational

cost of about 500 seconds.

PatchMatch [19] and its variants [19, 155, 110] can efficiently compute approximate

nearest neighbour fields (ANNFs), where the target is to find for each k × k patch in

one image, its corresponding patch in another image, and k is the patch radius. AN-

NFswhich can be used to set up coarse correspondences between images. The methods

of [50, 18, 27] employ ANNFs to compute initial optical flow. In addition, ANNF-based

approaches attempt to minimize dissimilarity between patches without enforcing spatial

coherence (i.e., patches in one image may have corresponding patches at arbitrary loca-

tions in the other image). Chen et al. [50], who used ANNFs to set up the initial optical

flow, addressed this issue through motion segmentation. They set up a global optimiza-

tion problem whose solution gives state-of-the-art large-displacement optical-flow results.

Chapter 2. Background 30

This method, however, has very high computational costs. Besse et al. [27] also proposed

a method that relies upon ANNFs to compute the initial optical flow. Belief propagation

is used to refine the initial optical flow.

The EAF methods [136, 74] have been shown to provide a fast alternate to the global

energy minimization techniques for solving pixel-labelling problems [91, 123, 18]. These

methods are often referred to as cost-volume filtering. Hosni et al. [91] successfully

implemented a cost-volume-filtering framework that applies the guided image filter [74]

for optical flow and stereo-disparity estimation. Their framework has fared well on the

Middlebury benchmarks [17].

Cost-volume filtering methods scale linearly with the size of the label space. This

renders these methods inefficient for dealing with high-resolution images or computing

motion detail, preserving optical flow. SimpleFlow [160] attempts to accelerate the fil-

tering process by providing a sublinear solution, albeit at the cost of reduced accuracy.

Lu et al. [123], on the other hand, reduced computational cost by randomly picking

out candidate regions in the cost volume. The regions are picked using a PatchMatch [19]

search over the entire cost volume. Computational savings are minimal as the entire cost

volume is searched.

More recently, Bao et al. [18] proposed an algorithm that also integrates EAF with

PatchMatch. They can achieve this speed increase by applying a hierarchical matching

step that downsamples the input images (Step 1). For each pixel in one downsampled

image, the search is restricted to similar pixels in the other image during the ANNF setup

(Step 2). Finally, labels are propagated from the downsampled image to the original

image (Step 3). Both Steps 1 and 2 adversely affect the accuracy of this method. The

approach presented in [123] is computationally expensive, as it sets up ANNFs by random

search over the entire cost volume. The method in [18] trades off speed for accuracy and

provides a graphics processing unit (GPU) implementation that is about 100 times faster

than the method in [123].

Chapter 2. Background 31

Optical-flow estimation algorithms that use ANNFs to set up correspondences suffer

from the spatial coherence problem. This stems from the fact that an ANNF search does

not constrain the search radius for finding correspondences. To address this issue and

to enforce spatial coherence, [50] uses motion segmentation, and [123] and [18] rely on

EAF.

2.2.3 Road-Boundary Detection in Traffic-Video Surveillance

The previous methods developed for automatic lane and road detection can be classified

into three main categories: (1) activity-driven, (2) feature-driven, and (3) model-driven.

This section provides a brief survey of the techniques developed in each category. We

refer the reader to [103, 85] for a more detailed survey.

Activity-driven methods: The activity-driven techniques [51, 130, 154] use vehic-

ular motion to build an activity map for the traffic scene and divide the road region into

active (road) and inactive (non-road) regions. The work by Stewart et al. [154] developed

one of the earliest activity-driven methods. Their method accumulates an activity map

that records scene changes resulting from vehicular motion. Then, the traffic scene is

divided into either active or inactive areas.

Melo et al. [130] built on the idea by [154] and developed a method that incorporates

the Kalman filter to track moving vehicles. Then, they modelled the resulting motion

trajectories using second-degree polynomials and applied K-means clustering to calculate

lane centres. Recently, Chen et al. [51] extended the work by [130] by developing a

trajectory similarity distance to improve clustering.

Feature-driven methods: The feature-driven methods [6, 109, 146] rely on low-

level image features, such as colours and textures to detect the lane and road boundaries.

Aly [6] developed a method for detecting lane marks in urban roads. His method ap-

plies lane analysis using selective regions, which requires camera calibration and uses

inverse perspective mapping to construct a top view of the road. Next, the algorithm

Chapter 2. Background 32

applies image filtering and thresholding to extract lane features. Finally, the random

sample consensus (RANSAC) algorithm is used to ignore feature outliers and fit Bezier

Splinespolynomials to lane boundaries.

Satzoda et al. [146] proposed a similar method to [6] for detecting lanes. How-

ever, their work processes selected image bands and applies steerable filters, which are

orientation-selective convolution kernels, to extract lane features. They also used a lane

geometric model to deal with feature outliers. Kong et al. [109] developed an alternative

method that divides the road-detection problem into two tasks: (1) estimation of the

road vanishing point and (2) segmentation of the road region based on the estimated

vanishing point. The estimation task applies Gabor filters to extract texture orientations

and feeds them into a soft voting scheme to estimate the vanishing point. Gabor filters

are bandpass filters that analyze an image at different scales and orientations. Then,

theThe segmentation task uses the detected vanishing point as a constraint to identify

the dominant road boundary.

Model-driven methods: The model-driven methods [189, 169, 39, 4] perform ei-

ther road classification or model fitting. Road classification aims to learn a prior model

for road regions, which is used later to assign each pixel a likelihood of belonging to a

road region. For example, Brust et al. [39] presented an algorithm that uses convolu-

tional neural networks to classify image patches as belonging to either road or non-road

regions. The algorithm learns a prior model that incorporates both spatial and appear-

ance information of image patches belonging to road regions. Then, the neural network

generates a classification map that assigns the likelihood of belonging to a road region

to each pixel.

Model fitting methods [189, 169, 4] match a geometric road model to the traffic scene.

Wang et al. [169] proposed a lane detection method based on the B-snake algorithm. This

method applies edge detection on the input image and partitions it into several horizontal

segments. Then, the algorithm assumes perspective parallel lane lines and detects a set

Chapter 2. Background 33

of control points along the mid-line of the lane. These points are used to define an active

contour model, which is a contour that alters its shape and position to obtain minimal

energy state.based on basis splines (B-splines), and In this case, energy minimization is

used to deform the contour to both the left and right to detect the lane boundary.

Zhou et al. [189] proposed another lane geometrical model that has four parameters:

starting position, lane original orientation, lane width, and lane curvature. Their algo-

rithm has three stages: (1) offline calibration to estimate the camera parameters, (2)

model parameter estimation to locate the lane width and dominant orientation, and (3)

model matching to find the best lane model. Recently, the method by [4] extends the pre-

vious techniques by using geographical information to estimate several road priors. Then,

it develops a road generative model that combines the road priors with other contextual

cues extracted from the traffic scene, such as horizon lines, lane marks, and vanishing

points. The generative model is used to construct a confidence map that assigns each

pixel a likelihood of belonging to a road region.

2.3 Parameter Tuning

Parameter tuning is one the important tasks in building large-scale computer vision

pipelines. This is because the pipeline needs to adapt to changes in input vision streams,

such as different lighting, environmental, and scene conditions. This section provides a

review of the parameter-tuning problem, which is also referred to in literature as the

algorithm configuration problem.

Let us assume an algorithm A is parametrized by a set of parameters θ ∈ Θ belonging

to a parameter space Θ. We define an input set of problem instances D and a target

performance metric given by the function m(θ, π). This metric computes the performance

of algorithm A on instance π ∈ D. The goal of the algorithm configuration is to find a

θ̂ that optimizes the metric m on D. The metric m usually defines the running time

Chapter 2. Background 34

or output accuracy of algorithm A. However, several challenges exist in configuring the

parameters of many algorithms, which include that (1) algorithms may be expensive

to compute [101, 94] and that (2) metric functions usually do not have closed-form

representations to calculate gradients.

Several approaches have been proposed for solving the algorithm configuration prob-

lem. These approaches can be classified into either model-based or model-free approaches.

The difference is whether a model is used to describe the dependency between the pa-

rameter settings and the target performance objective.

Model-free approaches [2, 32, 31, 97, 96, 9] are popular due to their simplicity and

the ability to use them out of the box. These approaches have been successful in opti-

mizing several algorithms, especially for constraint programming problems. Examples of

these methods include the methods by [2] and [32] which addressed the optimization of

numerical parameters.

The method by [2] used a heuristic based on a local search procedure, whereas [32]

proposed the racing algorithm, which begins with an input set of candidate parameter

settings or configurations and iteratively evaluates them on a stream of input instances.

This continues until enough statistical evidence of the performance of each setting is gath-

ered. The configurations with poor performance are then eliminated, and the surviving

configurations are used again as input. Several other methods have been also proposed

for the tuning of categorical parameters, which include the racing algorithm by [31] and

the iterated local search algorithm ParamILS by [97, 96]. Moreover, genetic algorithms

have been used by [9] for parameter tuning.

Model-based approaches [95, 101, 94, 21, 96] have also been studied in literature.

These approaches have the advantage of being more appealing than the model-free ap-

proaches. This is due to their ability to interpolate the response surface of the target

performance metric over the parameter space using a small set of tested parameter set-

tings, providing intuition regarding the response of unseen parameter settings that can-

Chapter 2. Background 35

not be determined using model-free approaches. This also provides the advantage of

extrapolating to unseen locations of the parameter space to optimize the target objective

function over the parameter space. Several model-based approaches have been proposed

for solving the algorithm configuration problem.

A popular approach is sequential model-based optimization (SMBO) [95, 94, 21, 96],

which iterates between two main steps: fitting a model and using the model to select

parameter settings. Initially, the fitting stage interpolates the performance metric using

a set of initial settings with their measured metric values. Then, extrapolation is used

to find any unseen optimal setting, which is added to the initial set of parameters af-

ter measuring its metric value. The main advantage of this approach is that it treats

algorithms as blackbox functions with no closed-form representation.

The SMBO approach, which was first proposed by Bartz-Beielstein et al. [21], uses an

efficient global optimization algorithm based on the work by [101] for optimizing black-

box functions using Gaussian process (GP) models. They also developed a sequential

parameter optimization (SPO) toolbox that included an automated SMBO algorithm for

tuning numerical parameters. The work by [95] extended the work by [21] by proposing

the time-bounded SPO method that reduces the runtime overhead required for comput-

ing the GP response-surface models. This is done by using approximate GP models and

randomly sampling parameters during optimization. The method is also time-bound,

thereby forcing a user-defined time budget on every run of the algorithm parameter op-

timization. Thus, early termination of parameter settings results in high computational

costs.Thus, early terminating parameter settings resulting in high computational costs.

Random forests [34] have also been used with several other methods [22, 93] to model

response surfaces. Random forests are similar to decision trees but with real values

as their leaves. They have been shown to provide good performance for optimizing

categorical parameters [22, 93].

Chapter 3

Scalable Computer Vision Systems

This chapter presents a stream algebra for the formal description of computer vision

pipelines. The algebra is defined using the mathematical definitions of stream process-

ing [52, 38, 43, 55] and communicating sequential processes (CSP) [88]. These definitions

have been found useful in developing several programming languages and concurrency

models. For example, CSP was the basis for the Go language concurrency model. Stream

processing also influenced the design of several algebra frameworks in databases for pro-

cessing queries over event and relational streams (see Section 2.1). Our stream algebra

has three main components: 1) a common notation for expressing workflows, 2) a set

of data-processing and flow-control operators, and 3) a set of formal semantics used to

write workflow expressions.

The outline of this chapter is as follows. Section 3.1 presents our algebra and its main

components. It also discusses several state-of-the-art computer vision algorithms and

shows how our stream algebra can effectively describe them using equations over vision

streams. Section 3.2 shows how our algebra can naturally and efficiently describe feedback

control. Section 3.3 gives a general discussion of the different optimizations enabled by the

algebra for efficiently processing image and video streams. Finally, Section 3.4 presents

the algebra implementation in the Go language.

36

Chapter 3. Scalable Computer Vision Systems 37

3.1 Stream Algebra

Our stream algebra [76, 77, 78] consists of three main components: a common notation

for expressing pipelines, a set of data-processing and flow-control operators, and the

formal semantics used to write algebraic expressions. This section gives an overview of

the notation and semantics of the algebra and the algebra operators.

3.1.1 Notation

Definition 3.1.1 (Data streams) A data stream is defined as an infinite sequence of

data tuples, which we can write to and read from using the functions:

λx → s

← s.

For the algebra definition, we refer to the set of all streams as S. A stream S ∈ S over

a set I is an infinite sequence of elements of the set I. In our case, I represents the set

of images, and S can be a sequence of unordered or ordered images. Also, zero-based

indices define the location of elements in S, where S[0], S[1], S[2], ... define the first,

second, third, etc., elements. To signify that a stream contains tuples of a specific type

T , we use the notation S⟨T ⟩.

Definition 3.1.2 (Stream operator) A stream operator is a function h ∶ Sm → Sn ∶

S1
in, . . . , S

m
in → S1

out, . . . , S
n
out that maps n input streams to m output streams.

The following constructs are used to define the algebra operators:

Definition 3.1.3 (Atomicity) We define a set of statements executed as an atomic

operation using { statements }.

Chapter 3. Scalable Computer Vision Systems 38

Definition 3.1.4 (Concurrency) An infinite loop is defined as loop : body of loop.

The loop applies the body logic iteratively on input stream tuples. The loop runs in its

own thread. If an operator defines several concurrent loops, they all share the defined

states, and loopj designated as the j-th loop.

Definition 3.1.5 (Shared state) A state defined as state u indicates a shared state

and can be accessed by the next loops.

Definition 3.1.6 (Stream I/O) The function x ← s reads a tuple from stream s into

x, and the function e→ s writes a tuple e to stream s.

Definition 3.1.7 (Attribute access) We use x.y to access attribute y from the com-

posite variable x.

In addition, a streaming pipeline is defined as follows:

Definition 3.1.8 (Streaming pipeline) A streaming pipeline is a graph G = (V,E)

with vertices V , representing operators, and edges E, representing the direction of data

communication. We refer to this graph as the workflow graph.

The operator definition and implementation follow the following notation:

Definition 3.1.9 (Operator declaration) A stream operator X is a mapping function

that can have zero or more parameters. The parameters are the user-defined functions

and their functional parameters. Given the functional signature of each parameter, we

derive a stream operator and declare it using the following format:

f1 ∶ signature1, . . . , fk ∶ signaturek
X(f1, ..., fk) ∶ Sm → Sn .

The semantics of the derived operator are defined using the declared notational constructs

that include atomicity, shared state, concurrency, stream I/O, and attribute access.

Our algebra operators are categorized into three main categories: 1) first-order, 2)

higher-order, and 3) rate-control. To define the first-order and higher-order operators, we

Chapter 3. Scalable Computer Vision Systems 39

studied the database operators used to process relational data streams and redefined them

to match the notation and semantics of our algebra. These database operators include the

Map, Reduce, and Filter operators that are used for data transformations on relational

streams [115, 46]. They also include the Scatter, Gather, and Merge operators that are

usually used for data processing in data-parallel frameworks [73, 71]. For data rate-

control, we studied the Latch operator introduced by [44] to interpolate tuples between

the actual tuples of a given input stream. We also introduced two operators, Cut and

LeftMult, which we think are important in describing and integrating computer vision

algorithms working at different data flow rates.

3.1.2 First-order Operators

We start by formulating simple first-order operators that typically process a single-input

stream to produce a predefined number of output streams.

Definition 3.1.10 (Map) The operator synchronously reads from a single-input stream

Sin, performs a user-defined mapping function on input tuples, and writes the computed

value to an output stream. The operator is parametrized by a list of user-defined mapping

functions f ∶ List ⟨X × P → Y ⟩ and a vector of user-defined parameters p0 ∶ List ⟨P ⟩.

Each function f[i] receives the incoming tuple and one or more user-defined functional

parameters of type P . These parameters control the behaviour of the user-defined function

f[i]. The operator has two state variables i and p for holding the index of the current

active mapping function and the vector of parameters for all mapping functions. A lookup

function is used to extract a command section of each incoming tuple, which can change

the current active function index and/or the user-defined functional parameters:

f ∶ List ⟨X × P → Y ⟩
map(f, p0) ∶ S ⟨X⟩→ S ⟨Y ⟩

Chapter 3. Scalable Computer Vision Systems 40

state i = 0; p = p0

loop ∶ x← Sin

j, y = lookup(x)

if j is defined then i = j

if y ≠ null then p[i] = y

f[i](x, p[i])→ Sout

Definition 3.1.11 (Reduce) This operator is similar to Map, but it keeps track of an

additional internal shared state u ∶ U and is parametrized by a list of mapping functions

g ∶ List ⟨U ×X × P → U × Y ⟩ and an initial state u0:

u0 ∶ U, g ∶ List ⟨U ×X × P → U × Y ⟩
reduce(g, u0, p0) ∶ S ⟨X⟩→ S ⟨Y ⟩

state u = u0; i = 0; p = p0

loop ∶ x← Sin

j, y = lookup(x)

if j is defined then i = j

if y ≠ null then p[i] = y

u, z = g[i](u,x, p[i])

z → Sout

Notice that, if the input list of functions f ∶ List ⟨X × P → Y ⟩ to the Map or Reduce

operator has an empty set of parameters P , we can simply omit this set and write the

list of functions as f ∶ List ⟨X → Y ⟩. Here, we assume that the input set of parameters

to every function is optional. Moreover, a Map (f, p0) or Reduce (g, u0, p0) operator that

Chapter 3. Scalable Computer Vision Systems 41

has an empty initial set of input parameters p0 can have this set omitted and treated as

optional. In such cases, we can simply write Map (f) or Reduce (g, u0). Moreover, if a

Map (f) receives a list of functions f that contains only one function h = f[0], we can

simplify expressions by writing Map (h). Similarly, this assumption applies to Reduce.

Definition 3.1.12 (Filter) This operator is a special case of the Map operator and is

parameterized by a predicate θ ∶ X → boolean. The operator has two output streams S1
out

and S2
out. The incoming readings that meet the predicate are forwarded to S1

out and others

that do not are sent to S2
out:

θ ∶X → Boolean
filter(θ) ∶ S ⟨X⟩→ S ⟨Y ⟩ × S ⟨Y ⟩

loop ∶ x← Sin

if θ(x) then x→ S1
out else x→ S2

out

Definition 3.1.13 (Source) The operator has no input stream and writes to one output

stream. It is parametrized by an initial shared state u0 ∶ U and a generator function

h ∶ U → U × Y :

source(u0, h) ∶ ∅→ S ⟨Y ⟩

state u = u0

loop ∶ u, y = h(u)

y → Sout

Definition 3.1.14 (Copy) This operator synchronously reads and duplicates every in-

put tuple to all outgoing streams. It is parametrized by the number of output streams:

Chapter 3. Scalable Computer Vision Systems 42

copy(n) ∶ S→ Sn

loop ∶ x← Sin

x→ Sout[i] for all i ≤ n

Definition 3.1.15 (Ground) The operator destroys the incoming stream:

ground ∶ S→ ∅

loop ∶ ← Sin

3.1.3 Rate-control Operators

The stream algebra provides several operators for data rate and flow control. The input

and output streams can be synchronized or asynchronized. If asynchronized, the input

and output streams are decoupled and have different data rates.

Definition 3.1.16 (Latch) The operator takes a single incoming stream Sin and pro-

duces two outgoing streams S1
out and S2

out. For each incoming tuple, the operator writes

it synchronously to S2
out and asynchronously to S1

out. For asynchronous writing, the op-

erator duplicates tuples of the incoming stream if S1
out has a faster data rate than Sin and

samples the incoming stream when S1
out is slower than Sin. Notice that sampling means

that the output stream will lose some incoming tuples:

latch ∶ S→ S × S

loop ∶ x← Sin

{u = x;x→ S2
out}

loop ∶ {u→ S1
out}

Chapter 3. Scalable Computer Vision Systems 43

Definition 3.1.17 (Cut) This operator is similar to Latch; however, each incoming

tuple is asynchronously written only once to S1
out. When S1

out has a faster data rate than

Sin, nil is used for the extra writes:

cut() ∶ S→ S × S

state u = nil

loop ∶ x← Sin

{u = x ;x→ S2
out}

loop ∶ {y = u ;u = nil}

y → S1
out

Definition 3.1.18 (LeftMult) LeftMult has two input streams S1
in and S2

in and one

output stream Sout. This operator applies a Latch on S2
in to produce the streams S1 and

S2. It then grounds S1 and outputs pairs (x1, x2), where x1 ∈ S1
in and x2 ∈ S2. Thus,

the output data rate is dependent on S1
in and is independent of S2

in. This operator is a

generalized sampling operator, as S1
in can be thought of as a clock stream that samples

S2
in. RightMult can be similarly defined:

left-mult ∶ S ⟨X1⟩ × S ⟨X2⟩→ S ⟨X1 ×X2⟩

S1, S2 = Latch(S2
in) ; Ground(S2)

loop ∶
⎡⎢⎢⎢⎢⎢⎢⎣

← S1
in

← S1

⎤⎥⎥⎥⎥⎥⎥⎦
→ Sout

3.1.4 Higher-order Operators

Section 3.1.2 describes the first-order operators, where the number of input and output

streams are predefined by the operator definition. The operators also are parametrized

by simple functions. Any pipelined composition of first-order operators results in first-

order operators as well. This section extends the algebra by presenting higher-order

Chapter 3. Scalable Computer Vision Systems 44

operators. These operators process collections of streams and have functions and first-

order operators as their input parameters.

Definition 3.1.19 (Mult) The operator has k incoming streams, and one output stream

Sout. The operator reads one value at a time from each incoming stream, forms a vector

(x1, ..., xk), and synchronously writes this vector to the outgoing stream:

mult() ∶ Sk → S

loop ∶

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

← Sin[1]

...

← Sin[k]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→ Sout

Definition 3.1.20 (Add) This operator also has k incoming streams and one output

stream Sout. The operator asynchronously reads values from the incoming stream and

performs the best effort to sequentially write them to the outgoing stream:

add() ∶ Sk → S

for all i ≤ len(Sin)

loop ∶ {x← Sin[i];x→ Sout}

Definition 3.1.21 (Scatter) The operator synchronously receives an input stream and

generates a list of output streams. The operator is parameterized by two functions: f ∶

X → List ⟨Y ⟩ and p ∶ Y → N, where f is a generator function that computes output

Chapter 3. Scalable Computer Vision Systems 45

values, and p is a partition function that maps each output value y to the p(y)-th output

stream:

f ∶X → List ⟨Y ⟩ , p ∶ Y → N
scatter(f, p) ∶ S ⟨X⟩→ List ⟨S ⟨X⟩⟩

scatter(f, p) ∶ Sin ↦ Sout

let Sout = Empty-List ⟨S ⟨X⟩⟩

loop ∶ y = f(← Sin)

yi → Sout[p(yi)] for all yi ∈ y

Definition 3.1.22 (Merge) The operator is the inverse of Scatter in the sense that it

merges a collection of incoming streams back into a single outgoing stream. The operator

reads from n incoming streams of type X into a buffer of size n (one slot for each incoming

stream). A selection function is used to pick the element in the buffer to be written to the

outgoing stream. The selection function f ∶X → (Y,⪯) has a partial order over Y that is

used to determine the smallest element (w.r.t. ⪯), remove it from the buffer, and write

it to the output stream:

f ∶X → (Y,⪯)
merge(f,⪯) ∶ List ⟨S ⟨X⟩⟩→ S ⟨X⟩

merge(f) ∶ Sin ↦ Sout

State ∶ B where ∣B∣ = ∣Sin∣.

for each Sin = Sin[i]:

loop ∶ {if B[i] == nil then B[i]← Sin}

end for

loop ∶ if nil /∈ B then

i∗ = argmin⪯{f(B[i])}

{B[i∗]→ Sout;B[i∗] = nil}

end if

Definition 3.1.23 (List-Map) This operator is a higher-order operator that has col-

lections of streams as input and output. The operator is a generalization that allows us

Chapter 3. Scalable Computer Vision Systems 46

to apply a composition of first-order pipelines to the list of streams. Given a collection

of streams Sin generated by Scatter, one can apply a pipeline of first-order operators on

each stream Sin[i]:

h ∶ S ⟨X⟩→ S ⟨Y ⟩
list-map(h) ∶ List ⟨S ⟨X⟩⟩→ List ⟨S ⟨Y ⟩⟩

list-map(h) ∶ Sin ↦ Sout

let Sout = Empty-List ⟨S ⟨Y ⟩⟩

for all i ≤ len(Sin)

loop ∶ y ← h(Sin[i])

y → Sout[i]
.

The higher-order operators allow the algebraic description of large-scale stream pipelines

processing collections of streams and having high degrees of concurrency. Figure 3.3 shows

the Scatter, List-Map, and Merge parallel processing pattern naturally expressed in our

algebra. This pattern is popularly utilized in several concurrent processing environments,

such as distributed clusters, graphics processing units (GPUs), and multi-core processing.

Later, in Section 3.3, we will discuss the ability of our algebra to enable automatic

optimization of pipeline performance by automatically finding the best execution plan.

Such a plan may involve automatic replacement of a simple first-order Map operator by

a more optimal execution pattern, such as the one shown in Figure 3.3.

3.1.5 Examples

There is a continuous need for computer vision algorithms that can process vision streams

in real time. In this section, we present several examples of algorithms that successfully

applied data-streaming concepts in processing vision streams [145, 175]. Particularly and

without loss of generality, we will show how our stream algebra can effectively describe

the vision pipelines of these algorithms using a set of equations over data streams. These

algebraic definitions are provided as examples to guide researchers through the process

Chapter 3. Scalable Computer Vision Systems 47

of describing their own vision pipelines. The algorithms are selected to address a diverse

range of vision problems, such as activity recognition, analysis of photo streams, video

segmentation, online dictionary learning, and active learning. The complexity of the

algorithms varies from a simple one that defines one online operator to complex ones

that have several concurrent operators.

Activity Recognition

In computer vision, the activity recognition task aims to recognize the behaviour and

actions performed by single or multiple moving objects in video streams. Recently,

Ryoo [145] developed a method for early recognition of human actions. These actions are

hand shaking, hugging, kicking, pointing, punching, and pushing. Initially, the algorithm

performs offline learning to build action models. Then, the models are later used by the

algorithm to predict actions online.

To learn action models, for each target action, the algorithm receives a set of train-

ing videos. Each video is then processed to extract 3D spatio-temporal features. The

extracted features from all videos are then clustered into k visual words to learn a

bag-of-words model.The extracted features from all videos are then clustered, and the

centroids of the clusters are used to define k visual words. A bag-of-words model is

then defined for each action as a histogram of occurrence counts of the visual words.

For each training video i, the algorithm builds an integral histogram of visual words

H i = (H i
0,H

i
1, ...,H

i
j,) by extracting visual words and accumulating the words over

time. Here, H i
j (k = ∣H i

j ∣) is the histogram of visual words extracted from video i and

accumulated up to frame j. An action model is then defined as the integral histogram

resulting from averaging all the integral histograms of the action training videos. We

define the set D as the set of all learned action models.

For online prediction of actions, an input video stream is processed by initially split-

ting the stream into a sequence of partitions or clips C = {Cq ∣q = 0,1, ...}, where each

Chapter 3. Scalable Computer Vision Systems 48

has a duration △t frames. The bag-of-words model is then used to define a set of visual

words for each clip Cq by extracting 3D spatio-temporal features. The visual words are

then accumulated to build the integral histogram H = (H0,H1, ...,Hq, ...), where Hq is

the histogram of visual words accumulated up to clip Cq. The algorithm then matches

the integral histogram H with every action model in D and builds the likelihood stream

L = (L0, L1, ..., Lq, ...), where Lq is a vector capturing the matching score of Hq against

every action model in D. The predicted action stream A = (A0,A1, ...,Aq, ...) is then

computed for each clip Cq using Aq = arg max0≤i≤∣Lq ∣L
i
q, where Aq is the index of the

action with the maximum matching score in Lq.

To describe the online prediction step [145] using our algebra, the following data types

are defined:

Frame ∶ 2DImage; Feature ∶ Rm; Video ∶ S ⟨Frame⟩ ; Clip ∶ List ⟨Frame⟩,

where a Frame is a 2D image, a Feature is a vector belonging to the m-dimensional

space Rm, a Video is a stream of images, and a Clip is a list of frames for a given time

interval in a video stream of type Video. Using these data types, we can start describing

the online prediction step [145] by first defining the following function:

g ∶ Clip × Frame→ Clip × Clip

g(u,x) = { if duration(u) ≥△t then

u′ = ∅; y = u

else

u′ = u⊕ x //append x to clip u

y = ∅

return(u′, y) }.

Chapter 3. Scalable Computer Vision Systems 49

This function takes a clip u′ and a video frame x as input and outputs the two clips

u′ and y. The function continues buffering the incoming video frames into the clip u′.

When the duration of frames in u′ is greater than or equal to a predefined interval △t,

the function first copies u′ into y, then clears the content in u′. The Reduce operator

can be used with the function g to partition the incoming video stream into a set of

non-overlapping clips and create the following stream:

●∅ // . . . // ●C0 // ●∅ // . . . // ●C1 // ⋯

Here, arrows define the progression of time. The Filter operator can be used to remove

the empty clips and produce the clip stream C ∶ S ⟨Clip⟩ using the following algebraic

expression:

C ≜ Filter(λ x ∶ ∣x∣ ≠ 0) ○Reduce(g,∅)(V), (3.1)

●C0 // ●C1 // ⋯ // ●Cq // ⋯

The operator ○ forwards the output of the right operand to the input of the left operand.

The 3D spatio-temporal features are then extracted from each clip in the stream C using

the function f1 ∶ Clip → List ⟨Feature⟩. The Map operator can be parametrized by f1

to produce the feature stream F ∶ S ⟨List ⟨Feature⟩⟩:

F ≜Map(f1)(C). (3.2)

To transform the extracted features into visual words, [145] defined the function f2 ∶

List ⟨Feature⟩ → List ⟨Word⟩. This function leverages the learned bag-of-words model

to produce a visual word for each feature vector in the incoming list of features. The

f2 then outputs a list of visual words. The Map operator parametrized with f2 can

be defined using the following algebraic expression to produce the visual-word stream

Chapter 3. Scalable Computer Vision Systems 50

W ∶ S ⟨List ⟨Word⟩⟩:

W ≜Map(f2)(F). (3.3)

An integral histogram can be then generated from the stream W using the following

function:

g2 ∶ Histogram ×List ⟨Word⟩→ Histogram ×Histogram

g2(u,x) = { u′ = u + x

return(u′, u′)

},

where the operator + incrementally updates the histogram u using the incoming list of

visual words x. The updated histogram u′ is then returned as output. The Reduce

operator parametrized by the function g2 can then generate the stream H, which defines

the integral histogram:

H ≜ Reduce(g2, empty-histogram)(W), (3.4)

●H0 // ●H1 // ⋯ // ●Hq // ⋯

Using the set D of learned action models, the function d ∶ Histogram×ActionModel→ R

can be defined to match incoming histograms to learn action models in D and produce a

matching score for every histogram in the stream H (see [145] for details). We can then

use the function d to define the function f3 ∶ Histogram→ List ⟨R⟩, where:

f3(x) = {return [d(x,D[i]) for i ≤ ∣D∣]}.

This function outputs a likelihood vector for each histogram in stream H. The vector

Chapter 3. Scalable Computer Vision Systems 51

contains the matching scores to all action models in D. The Map operator parametrized

by the function f3 can then be defined using the following expression to produce the

likelihood stream K ∶ S ⟨List ⟨R⟩⟩:

K ≜Map(f3)(H), (3.5)

●K0 // ●K1 // ⋯ // ●Kq // ⋯

Notice that the stream K has a likelihood vector for each clip in the stream C. The incom-

ing likelihood vectors in K are then accumulated into one likelihood vector that defines

the output predicted likelihood over all incoming clips seen so far. This is performed

by [145] using a Bayesian combination function f4 ∶ List ⟨R⟩×List ⟨R⟩→ List ⟨R⟩. The

f4 function can be used to define the g3 function as follows: g3 ∶ List ⟨R⟩ × List ⟨R⟩ →

List ⟨R⟩ ×List ⟨R⟩

g3(u,x) = { u′ = f4(u,x)

return(u′, u′)

},

which performs the accumulation of incoming likelihood vectors x into the state vector

u. The Reduce operator parametrized by the function g3 can be used to produce the

accumulated likelihood stream L ∶ S ⟨List ⟨R⟩⟩:

L ≜ Reduce(g3,0)(K), (3.6)

●L0 // ●L1 // ⋯ // ●Lq // ⋯

Notice that 0 is a vector of zeros. As a last step, [145] outputs the predicted activity

that has the maximum likelihood score. This can be performed using the function f5 =

Chapter 3. Scalable Computer Vision Systems 52

λx ∶ arg max0≤i≤∣x∣ xi. The Map operator can then be parametrized by the function f5 to

produce the output activity stream A ∶ S ⟨R+⟩:

A ≜Map(f5)(L), (3.7)

●A0 // ●A1 // ⋯ // ●Aq // ⋯

Hierarchical Video Segmentation

Hierarchical video segmentation aims to divide the space-time video volume into a hierar-

chy of 3D space-time segments with consistent appearance. The space-time video volume

is a 3D volume (x, y, t) with (x, y) defining the 2D image space and t defining time. Thus,

at t0, we have frame 0 and, at tn, we have frame n. The traditional method [69] for per-

forming hierarchical video segmentation is to process the entire input video at once. This

is usually performed by initially building an oversegmentation that creates a large set of

3D segments. Then, neighbouring segments are iteratively merged together to produce

the output segmentation hierarchy. This traditional method, however, exhausts memory

resources and constrains the size of input videos due to the need to process the entire

video at once.

To solve this problem, Xuand et al. [175] proposed a recent streaming framework

that approximates full video hierarchical segmentation and requires constant memory

resources. This algorithm starts by dividing the input video into a sequence of non-

overlapping clips of duration △t. Each clip is represented as a 3D space-time volume and

is segmented into a collection of 3D space-time segments. Then, hierarchical clustering

is applied on these segments to generate a segmentation hierarchy. The method also uses

a Markovian assumption to build the hierarchy of the current clip using the hierarchy

generated for the previous clip, thus linking the sequence of segmentation hierarchies

generated for the incoming stream of clips.

Chapter 3. Scalable Computer Vision Systems 53

To describe the method by [175] using our algebra, we reuse the data types and

functions defined in Section 3.1.5. Given the video stream V ∈ Video, a non-overlapping

clip stream C ∶ S ⟨Clip⟩ can be generated using the Reduce operator parametrized by

the function g (see Section 3.1.5). The method by [175] can be defined by the function

f6 ∶ Hierarchy × Clip → Hierarchy. This function takes the current clip and hierarchy

generated for the previous clip as input. The function then uses the previous hierarchy

to construct and output a new segmentation hierarchy for the input clip. Using f6, the

following function can be defined:

g4 ∶ List ⟨R⟩ ×List ⟨R⟩→ List ⟨R⟩ ×List ⟨R⟩

g4(u,x) = { u′ = f6(u,x)

return(u′, u′)

}.

Notice that this function takes as input a clip x and a state variable u that stores the

recent generated hierarchy. The function then uses f6 to create a new hierarchy and

assigns it to output and state variables. The Reduce operator parametrized by the g4

function then produces the stream of segmentation hierarchies H ∶ S ⟨Hierarchy⟩:

H ≜ Reduce(g4, empty-hierarchy)(C). (3.8)

Several other computer vision algorithms [119, 105, 120] can be similarly described using

our algebra.

Chapter 3. Scalable Computer Vision Systems 54

3.2 Feedback Control for Streaming Computer Vi-

sion Pipelines

Feedback control is an essential task in several online computer vision algorithms [105,

108, 149, 47, 98] that perform parameter tuning or iterative optimization (see Sec-

tion 2.1.1). It is obvious that our stream algebra can describe feedforward pipelines,

which is referred to in literature as open-loop systems [126]. In this section, we show that

our stream algebra can naturally express feedback control in computer vision pipelines.

3.2.1 Algebraic Description of Feedback Control

Section 2.1.1 provided a brief overview of the basic concepts of feedback-control systems.

This section builds upon these concepts and defines a formal description of feedback

control consistent with the definition of our stream algebra.

Let us assume a feedforward pipeline exists containing a sequence of Map and Reduce

operators {X1, ...,Xk} as shown in Figure 3.1a. Each operator Xj has an input stream

Ij−1 and an output stream Ij. The output stream of each operator Xj is fed as the input

stream of the next operator Xj+1. The streams I0 and Ik define the pipeline input and

output streams, respectively.

Each streaming operator can be treated as a multivariate process with the user-defined

parameters of the mapping functions in either Map or Reduce operators representing the

input-controlled variables. Figure 3.1b shows a single-loop feedback-control system for

controlling the operators X2 to Xj in the feedforward pipeline of Figure 3.1a. A single

feedback loop is created using a return stream R, two operators E1 and E2, and feedback

stream F . The return stream is a copy of the output stream obtained using the Copy

operator:

I ′k,R1 ≜ Copy(2)(Ik). (3.9)

Chapter 3. Scalable Computer Vision Systems 55

I0

// X1
I1

// X2
I2

// ⋯
Ij−1

// Xj
Ij

// ⋯
Ik−1

// Xk
Ik

//

(a)

X2
I2

// ⋯
Ij−1

// Xj
Ij

// ⋯
Ik−1

// Xk
Ik

// Copy //

R
oo

I ′k

X1
I1

// LeftMult
I ′1
OO

E2
F

oo E1
oo

I0

OO

(b)

X2
I2

// ⋯
Ij−1

// LeftMult
I ′j−1

// Xj
Ij

// ⋯
Ik−1

// Xk
Ik

// Copy //

R1

oo

R2

oo

I ′k

X1
I1

// LeftMult

I ′1
OO

E1
n

F1

OO

⋯oo E1
1

oo

I0

OO

E2
n

F2

OO

⋯oo E2
1

oo

(c)

Figure 3.1: Example of a multi-loop feedback-control system: a) feedforward streaming
pipeline; b) single-loop feedback-control system for controlling a set of operators in the
streaming pipeline shown in (a); c) multi-loop feedback-control system for controlling a
set of operators in the streaming pipeline shown in (a). Each operator Xi represents Map
or Reduce and has the incoming stream Ij and the outgoing stream Ij+1. The two streams
I0 and Ik refer to the pipeline input and output streams, respectively. The multi-loop
feedback-control system has two feedback loops. Each loop receives a copy Rt (t ∈ {1,2})
of the return stream R and has a sequence of controllers {E1

t , ...,E
t
n} with the output of

the last controller defining the feedback stream Ft.

Figure 3.1c extends the single-loop feedback-control system in Figure 3.1b to a multi-loop

feedback-control system with two feedback loops that are created and defined similarly.

Each feedback loop has a return stream Rt for t ∈ {1,2}, a sequence of operators Et
1, ...,E

t
n,

and a feedback stream Ft. The return streams are copies of the output stream obtained

using the Copy operator:

I ′k,R1,R2 ≜ Copy(3)(Ik). (3.10)

One can also apply Filter, Cut, or Latch to obtain the return streams. Both the return

Rt and feedback Ft streams represent the feedback signals in traditional feedback-control

systems. The operators Et
1, ...,E

t
n in each feedback loop process the return stream to

Chapter 3. Scalable Computer Vision Systems 56

generate a feedback stream Ft. Later, the feedback stream is merged with the input

stream of the target-controlled operator using merging operators similar to the LeftMult

operator in Figure 3.5c. These merging operators mimic the same functionality of con-

trollers in traditional feedback-control systems and are defined for the two feedback loops

of Figure 3.5c as follows:

I ′j−1 ≜ LeftMult()(Ij−1, F2), (3.11)

I ′1 ≜ LeftMult()(I1, F1). (3.12)

Here, Ij−1 and I1 are the input streams to the operators X1 and Xj, respectively. This

algebraic description shows that our stream algebra can naturally express feedback con-

trol. For the task of parameter tuning, the operators defined in the feedback loop can

evaluate the current output and generate a feedback stream that optimizes the controlled

operators. Equations 3.11 and 3.12 show LeftMult operators that merge feedback streams

with the input streams to the controlled operators.

Notice that the feedback loops in Figure 3.5c have their data-flow rate synchronized

with the flow rate of the feedforward pipeline. If the return streams are generated us-

ing the Cut operator instead of the Copy operator, the data-flow rate of the feedback

loops will be asynchronous and independent of the feedforward pipeline. In this case, the

operators defined in the feedback loops will process samples of the output stream. Fur-

thermore, if an Add operator is used instead of the LeftMult operator in Equations 3.11

and 3.12, every feedback stream Ft will have its elements interleaved with the corre-

sponding input stream of the controlled operator. This interleaving is useful in iterative

optimization where the output is fed back as input for reprocessing.

Although Figure 3.5c shows a multi-loop feedback-control system with two feedback

loops, more feedback loops can be defined by increasing the number of return streams

generated by the Copy operator. For m return streams, we can have m feedback loops

Chapter 3. Scalable Computer Vision Systems 57

to control m operators.

3.2.2 Examples

There is considerable interest in developing online computer vision algorithms that use

feedback control to perform parameter tuning or iterative optimization tasks. These

tasks allow an online algorithm to adapt itself continuously to different scene contexts

or iteratively improve output results over time. In this section, we discuss two state-of-

the-art algorithms [47, 105] that process vision streams and apply feedback control to

perform parameter tuning and iterative optimization. Without loss of generality, we will

discuss how we can effectively express the feedback control of these algorithms using our

stream algebra.

Online Adaptation of Tracking Parameters

Object tracking is an important problem in computer vision. It aims to capture the

trajectories taken by single or multiple moving objects over time. The main challenges

for object tracking algorithms are scene lighting and environmental changes, which can

result in inaccurate tracking results. To solve this problem, Chau et al. [47] developed an

algorithm that applies online parameter tuning to continuously optimize the performance

of a given tracking algorithm to unexpected scene changes. The method operates in two

stages: an offline learning stage and online control stage.

To perform online learning, [47] started by taking the following inputs: 1) a collection

of training videos belonging to different scene contexts, 2) a set of annotated areas for

each video indicating moving objects, 3) a set of annotated trajectories, and 4) a tracking

algorithm with a predefined set of control parameters. To track humans, [47] used the

appearance-based tracking algorithm by [48], which has six input parameters. The

method by [47] then extracts context features from each frame of every input training

video. Each feature is a vector of six elements representing the characteristics of human

Chapter 3. Scalable Computer Vision Systems 58

objects, which include their density, occlusion, and appearance. Later, the similarities

between context feature vectors are used to partition each video into a sequence of clips.

For each clip, the tracking algorithm is applied, and parameter optimization is used

to learn its best parameter setting. Then, for each scene context, the features of all its

training videos are clustered, and the best parameter settings are selected for each cluster.

Finally, a database D is used to save all context clusters and their selected parameters.

In the online control stage, [47] processed an incoming video stream V = {Vi∣i =

0,1,2, ...}. The method uses the histogram of oriented gradients (HOG)-based detector

by [53] to locate human objects in every frame Vi ∈ V . The output is a stream B =

{Bi∣i = 0,1,2, ...}, where Bi is the list of detected objects in Vi. Later, a temporal

window of interval △t1 is defined to record all detected objects in the sequential frames

belonging to the window. Then, for every frame Vi, the method defines the pair (Vi,Ai),

where Ai is the list of detected objects in the temporal window ending with frame Vi.

This generates the stream U = {Ui∣i = 0,1,2, ...}, with Ui = (Vi,Ai). A feedback stream

F = {Fi∣i = 0,1,2, ...} is also defined, with each element Fi representing the best parameter

setting found so far. The stream F is multiplied by the stream U to produce the tracker

input stream Q = {Qi∣i = 0,1,2, ...}, where Qi = (Vi,Ai, Fi). The tracking algorithm

receives the stream Q and performs the following actions: 1) sets the tracking control

parameters to Fi ∈ Qi, 2) assigns trajectories Ti for moving objects in frame Vi, and 3)

outputs the stream J = {Ji∣i = 0,1,2, ...}, where Ji = (Vi,Ai, Ti). Elements in the stream

J are then recorded in a temporal window of interval △t2. For each frame Vi, a clip

Ci is defined using the temporal window ending with frame Vi. Every clip stream Ci is

then attached to the corresponding element Ji ∈ J to produce the final output stream

H = {Hi∣i = 0,1,2, ...}, where Hi = (Vi,Bi, Ti,Ci). The stream H is then copied to stream

R, which defines the input to the feedback loop. A parameter-tuning algorithm takes

the stream R as input and produces the stream of parameter settings F . The tuning

algorithm keeps track of the current best parameter setting and performs the following

Chapter 3. Scalable Computer Vision Systems 59

steps. 1) It uses (Vi,Bi, Ti) ⊂ Hi to compute two scores: an object interaction score s1

and a tracking error score s2. 2) Next, s1 and s2 are compared against the predefined

thresholds th1 and th2, respectively. 3) Then, if s1 > th1 and s2 > th2, an error state

is defined, the closest context for Ci ∈ Hi in database D is selected, and its parameter

setting is used as the current best parameter setting. 4) Finally, if s1 ≤ th1 and s2 ≤ th2,

then the algorithm continues using the previously found best parameter setting. The

tuning algorithm writes the best parameter setting to stream F , which is multiplied by

stream U to produce the tracker input stream Q. This completes the feedback-control

loop defined by [47] for parameter tuning.

To describe the parameter-tuning algorithm of [47] in the proposed stream algebra,

we use the feedback-control definitions in Section 3.2 and define the following data types:

Frame ∶ 2DImage; Video ∶ S ⟨Frame⟩ ; Clip ∶ List ⟨Frame⟩

Histogram ∶ List ⟨R⟩ ; Object ∶ R8 ×Histogram; Params ∶ R6

FrameInfo ∶ Frame ×List ⟨Object⟩ ; Trajectory ∶ List ⟨R2⟩ ;

TrackInput ∶ Frame ×List ⟨Object⟩ × Params

TrackInfo ∶ Frame ×List ⟨Object⟩ ×List ⟨Trajectory⟩

LoopBack ∶ Frame ×List ⟨Object⟩ ×List ⟨Trajectory⟩ × Clip,

where Video defines a video stream, Frame is a 2D image, Clip is a sequence of frames,

Histogram is a vector of integer numbers, and Object defines a moving object formed by

the pair (a, b), where a ∶ R8 is an object feature vector and b ∶ Histogram. The feature

vector defines the following features: 1) 2D shape ratio, 2) 2D area, 3) colour covariance

(RGB), and 4) dominant colour (RGB). In addition, Params is a 6D vector defining the

tracking algorithm parameters [48], and FrameInfo is a 2D vector (v,w), where v ∶ Frame

and w ∶ List ⟨Object⟩. Moreover, TrackInput is a 3D vector (v,w, p), where p ∶ Params.

The Trajectory is a path taken by a moving object described as a list of 2D points, and

TrackInfo is a 3D vector (v,w, e), where e ∶ List ⟨Trajectory⟩. Furthermore, LoopBack

is 4D vector (v,w, e, c), where c ∶ Clip. The method by [47] starts by receiving an input

Chapter 3. Scalable Computer Vision Systems 60

video stream V ∈ Video. The Copy operator then duplicates the V stream using the

following algebraic expression:

V1, V2 ≜ Copy()(V). (3.13)

Given the V1 stream, moving objects are detected in every incoming frame Vi ∈ V1. This

was performed by [47] using the function f1 ∶ Frame → List ⟨Object⟩ that implements

the HOG-based object detection algorithm by [53]. The Map operator parametrized by

this function can be used to produce the object stream B ∶ S ⟨List ⟨Object⟩⟩:

B ≜Map(f1)(V1). (3.14)

The following function is also defined to maintain the detected objects within a temporal

window of interval △t1:

g1 ∶ List ⟨Object⟩ ×List ⟨Object⟩→ List ⟨Object⟩ ×List ⟨Object⟩ ,

g1(u,x) = { for all z ∈ u

if (now() − arrivaltime(z) ≥△t1) then

u = u⊖ z //remove z from u

u = u⊕ x //append x to u

return(u,u) }

. The function keeps appending new detected objects x to list u, while deleting older

objects. The function then returns the updated list of objects. The Reduce operator

parametrized by the function g1 can be used to construct the object summary stream

Chapter 3. Scalable Computer Vision Systems 61

M ∶ S ⟨List ⟨Object⟩⟩:

M ≜ Reduce(g1,Empty-List)(B). (3.15)

Now, the Mult operator can synchronize the two streams M and V2. Remember that the

V2 stream is a copy of the input stream generated by Equation 3.13. The Mult operator

can then generate the stream U ∶ S ⟨FrameInfo⟩:

U ≜Mult()(V2,M). (3.16)

Given a feedback stream F ∶ S ⟨Params⟩ generated by the feedback-control loop by [48],

the LeftMult operator is defined to merge the stream F with the stream U . This generates

the output stream Q ∶ S ⟨TrackInput⟩ using the algebraic equation:

Q ≜ LeftMult()(U,F). (3.17)

Let f2 ∶ TrackInput → TrackInfo be a function defining the tracking algorithm. The

function receives the vector (v,w, p) ∶ TrackInput as input and processes both v and

w using the parameter vector p. Then, the function constructs a list of trajectories

and appends it to the vector (v,w) to generate the output y ∶ TrackInfo. The Map

operator parametrized by the function f2 can be defined to produce the trajectory stream

J ∶ S ⟨TrackInfo⟩ using the equation:

J ≜Map(f2)(Q). (3.18)

To describe the feedback-control loop by [47], the Copy operator can be used to copy the

output stream J into two streams: the final output stream J ′ and the return stream R:

R,J ′ ≜ Copy(2)(J). (3.19)

Chapter 3. Scalable Computer Vision Systems 62

We can now define the following function:

g2 ∶ Clip × TrackInfo→ Clip × LoopBack,

g2(u,x) = { for all z ∈ u

if (now() − arrivaltime(z) ≥△t2) then

u = u⊖ z //remove z from u

u = u⊕ x.v //append frame x.v to u

y = x⊕ u //append clip u to x

return(u, y) }.

This function keeps track of a temporal window u, which is a clip over the video frames of

the incoming x ∶ TrackInfo vectors in a time interval △t2. It then appends the clip u to

the input x to generate the output y ∶ LoopBack. The Reduce operator parametrized with

the function g2 can be then defined to process the stream R and produce the loopback

stream H ∶ S ⟨LoopBack⟩:

H ≜ Reduce(g2,Empty-List)(R). (3.20)

To calculate the quality of the tracking algorithm, [47] defined the two error functions:

f3 ∶ FrameInfo → R and f4 ∶ TrackInfo → R. The f3 and f4 functions define the object

interaction score and tracking error score, respectively. These functions can be used to

define the following parameter-tuning function:

g3 ∶ Params × LoopBack→ Params × Params,

Chapter 3. Scalable Computer Vision Systems 63

g3(u,x) = { s1 = f3(x.v, x.w)

s2 = f4(x.v, x.w, x.e)

if (s1 > th1 and s2 > th2) then

p = search-db(x.c,D)

return(p, p)

return(u,u) }.

This function keeps track of the best parameter setting and assigns it to the state vari-

able u. Initially, the g3 function calculates the error scores for the incoming vector

x ∶ LoopBack. If the scores are larger than the predefined thresholds, then a new parame-

ter setting is found by searching the database D for the best parameter setting matching

the context of the current clip x.c. The new parameter setting is then written to the

output. If the error scores are below the thresholds, then the incoming parameter setting

is passed to the output. The Reduce operator parametrized with the function g3 can be

defined to produce the feedback stream F ∶ S ⟨Params⟩:

F ≜ Reduce(g3, Initial-Params)(H). (3.21)

Notice that the stream F was merged with the stream U in Equation 3.17 using the

LeftMult operator to produce the tracker input stream Q. This competes the description

of the parameter-tuning method by [47] using the single-loop feedback-control definitions

of the proposed stream algebra.

Iterative Optimization for Aligning Photo Streams

Nowadays, several photo hosting websites store vast amounts of personal image and video

collections. These visual collections are usually received and stored as photo streams

organized in chronological order. Kim et al. [105] developed a method that processes

Chapter 3. Scalable Computer Vision Systems 64

Flickr photo streams to build common storylines. The method starts by grouping photo

streams from different Flickr users, such that each group has a common user activity.

The method then processes each group individually, where a group has n photo streams

I = {Ik∣k = 1,2,3, n}. The method attaches the following attributes to every photo: 1) a

visual descriptor defined as a spatial pyramid histogram, 2) the capture time, and 3) a

set of the foreground regions, which is initially set to an empty list. A photo stream Ik

is partitioned into a sequence of photo blocks Bk = {B{k,i}∣i = 0,1,2,}, where each block

B{k,i} contains photos taken during an interval △t1 (e.g., a day). A block also records the

earliest and latest capture times of its photos. The method by [105] works by iterating

between the following tasks: an alignment task and a co-segmentation task.

For the alignment task, the method by [105] takes as input a set of n photo streams.

A list of n blocks is then formed by reading one block from each stream. This produces

the block-list stream L = {Li∣i = 0,1,2,}, where Li ∈ L is a list of n blocks. Each incoming

list of blocks Li is then filtered to select a subset of blocks Ei ⊂ Li, such that all blocks

in Ei overlap in time by a period of at least △t2 (e.g., an hour). A vector (Ei,N) is

then defined, where N is a variable defining the number of algorithm iterations and is

initially set to zero. This produces the overlapped blocks stream Q = {Qi∣i = 0,1,2, ...},

where Qi = (Ei,Ni). A feedback stream F is then defined by [105] with the same data

type as the Q stream. The streams Q and F are then added together to produce the

stream P = {Pj ∣j = 0,1,2, ...}, where Pj = (Ej,Nj). Notice that elements in the P

stream are formed by interleaving the elements of the streams Q and F . Given a list

of blocks Ej ∈ Pj, the technique [105] computed the similarity of every block b ∈ Ej

to all other blocks in Ej. The similarity is computed using two distance functions,

f4 ∶ Photo × Photo → R and f5 ∶ Time × Time → R. Given two photos x ∈ b1 and y ∈ b2

that belong to two blocks b1 and b2, the f4 function computes the distance between x and

y. First, f4 tests whether the input images x and y have foreground regions assigned. If

so, f4 compares the histograms of these regions. If foreground regions do not exist, f4

Chapter 3. Scalable Computer Vision Systems 65

compares the spatial pyramid histograms of the input photos. The f5 function computes

the difference of the capture times between x and y. The method by [105] then defines

the energy function f6 ∶ Block × Block → R that computes the similarity between two

blocks b1 and b2 by summing the nearest-neighbour distances computed using f4 and f5

between photos in b1 and b2. Every list of blocks Ej ∈ Pj is then mapped to a graph

Gj ∶ Graph ⟨Block,Block ×Block⟩ that has blocks in Ej as vertices. Two blocks have an

edge in Gj if they have the smallest distance from each other. The alignment step then

produces the graph of blocks stream Z = {Zj ∣j = 0,1,2, ...}, where Zj = (Gj,Nj).

The co-segmentation stage processes the stream Z by mapping every graph Gj ∈ Zj

into a corresponding graph Yj ∶ Graph ⟨Photo,Photo ×Photo⟩. The vertices of the graph

Yj are the entire set of photos in all blocks in Gj, and two photos x and y have an edge if

they are a correspondent corresponding pair that belong to different blocks. In addition,

edges are added between every photo x and the k-nearest neighbours in its block. The

photos-graph stream M = {Mj ∣j = 0,1,2, ...} is then produced, where Mj = (Gj,Nj, Yj),

and Nj is also incremented by 1. Later, the co-segmentation technique by [104] is applied

to assign a set of m foreground regions for each photo in Yj ∈Mj. Photos with an already-

defined foreground regions also have their regions refined.

The output of the co-segmentation task is then fed back to the input of the alignment

task and the method by [105] keeps iterating between the two tasks. This is performed

using a feedback loop that splits the photos-graph stream M into two streams: the fi-

nal output stream M ′ and the return stream R. The splitting is based on the iteration

number variable Nj ∈ Mj. If Nj < Nstop, then Mj is forwarded to the return stream;

otherwise, Mj is sent to the final output stream M ′. Notice that Nstop is the maximum

number of iterations for each element Mj ∈ M . The algorithm then maps each element

of the return stream R into the vector Fl = (El,Nl) to produce the feedback stream

F = {Fl∣l = 0,1,2, ...}. Here, El is a list of all blocks defining the vertices in graph Gl ∈ Rl,

and Nl is the iteration number. As stated before, the streams F and Q are added together

Chapter 3. Scalable Computer Vision Systems 66

to produce the interleaved stream P used in the alignment step. Notice that the blocks

in F have photos with defined foreground regions. These regions are used to obtain more

accurate matching between photos in the alignment step. Having better matching also

improves the output of the co-segmentation step. This completes the feedback loop used

by [105] to that implements iterative optimization. To describe the iterative optimization

algorithm by [105] using our stream algebra, the following data types are defined:

Shape ∶ List ⟨R2⟩ ; Region ∶ Shape ×Histogram

Photo ∶ 2DImage × Time ×Histogram ×List ⟨Region⟩ ×R

Block ∶ List ⟨Photo⟩ × Time2; BlocksStruct ∶ List ⟨Block⟩ ×R;

BlocksGraphStruct ∶Graph ⟨Block,Block × Block⟩ ×R

PhotosGraphStruct ∶ BlocksGraphStruct ×Graph ⟨Photo,Photo × Photo⟩

A type Shape defines a 2D point list. A Region is a vector (s, h), where s ∶ Shape is the

region boundary and h ∶ Histogram is the feature descriptor of the region. A Photo is a

vector (a, t, h, r, nn), where a ∶ 2DImage is a 2D image, t ∶ Time is the capture time of

the photo, h ∶ Histogram is a feature descriptor, r ∶ List ⟨Region⟩ is a list of computed

foreground regions, and nn is a pointer to the nearest-neighbour photo. A Block is a

vector (b, t1, t2), where b ∶ List ⟨Photo⟩. In addition, t1 ∶ Time and t2 ∶ Time are the

earliest and latest capture times for all photos in b. A BlocksStruct is a vector (w, itr),

where w ∶ List ⟨Block⟩, and itr ∶ R is a variable recording the iteration number. A

BlocksGraphStruct is a vector (c1, itr), where c1 is a graph with blocks as vertices. A

PhotosGraphStruct is a vector (q, c2), where q ∶ BlocksGraphStruct, and c2 is a graph

with photos as vertices. To simplify the discussion, we assume three input photo streams

I = {Ik∣k = 1, ...,3}. To start processing the input streams, we define the function g4:

g4 ∶ Block × Photo→ Block × Block

Chapter 3. Scalable Computer Vision Systems 67

g4(u,x) = { if duration(u) ≥△t1 then

u′ = ∅; y = u

else

u′ = u⊕ x //append x to Block u

y = ∅

return(u′, y) }.

The g4 function partitions an incoming stream of photos into a set of blocks. The function

buffers the incoming photos into a state variable u that defines a block. While buffering,

the output y is set to an empty block. The buffering continues until the block u has its

duration larger than a predefined interval △t1 (24 hours as defined by [105]). At this

time, the output y is set to the block u, then u is reset back to an empty list. The Reduce

operator parametrized by the function g4 and followed by the Filter operator can be used

to map every stream Ik ∈ I into stream Bk ∶ S ⟨Block⟩:

Bk,Ek ≜ Filter(λ x ∶ ∣x∣ ≠ 0) ○Reduce(g4,Empty-List)(Ik). (3.22)

Ground()(Ek). (3.23)

Remember that the ○ operator forwards the output of the right operand to the input of

the left operand. The Filter operator discards the empty blocks produced by the Reduce

operator. These empty blocks are forwarded to the Ek stream and discarded using the

Ground operator. The Mult operator can then synchronize the streams B1,B2 and B3

to produce the block-list stream L ∶ S ⟨List ⟨Block⟩⟩:

L ≜Mult()(B1,B2,B3). (3.24)

Next, we define the function f7 ∶ List ⟨Block⟩ → BlocksStruct that filters every list

Chapter 3. Scalable Computer Vision Systems 68

Li ∈ L to select blocks that overlap in time by a period of at least △t2 (an hour as defined

by [105]). The function also sets the iteration number in the returned vector to zero.

The Map operator parametrized by the f7 function can be used to produce the stream

Q ∶ S ⟨BlocksStruct⟩:

Q ≜Map(f7)(L). (3.25)

Given the feedback stream F ∶ S ⟨BlocksStruct⟩, the Add operator can merge the two

streams Q and F together to produce the stream P ∶ S ⟨List ⟨BlocksStruct⟩⟩:

P ≜Add()(Q,F). (3.26)

To process the P stream, we define the functions f8 ∶ BlocksStruct→ BlocksGraphStruct

and f9 ∶ BlocksGraphStruct→ PhotosGraphStruct, where f8 converts the list of blocks

in each element Pj ∈ P into a graph Gj ∶ Graph ⟨Block,Block ×Block⟩. As discussed

before, an edge exists between two blocks in Gj if and only if the two blocks have the

smallest distance between each other. The function f9 converts a graph of blocks to a

graph of photos and increments the iteration counter variable by 1. It also applies co-

segmentation on the graph of photos to assign each photo a set of foreground regions or

improve an existing one. We can define two Map operators parametrized by the functions

f8 and f9 to produce the graph of photos stream M ∶ S ⟨PhotosGraphStruct⟩:

M ≜Map(f9) ○Map(f8)(P). (3.27)

To describe the feedback loop by [105] in our stream algebra, we apply the Filter operator

on the stream M to produce the output stream M ′ and the return stream R:

M ′,R ≜ Filter(λ x ∶ x.q.itr ≥ Nstop)(M). (3.28)

Notice that the Filter operator applies a predicate on the q ∶ BlocksGraphStruct of

Chapter 3. Scalable Computer Vision Systems 69

every vector Mj ∈ M . The predicate performs the test q.itr ≥ Nstop. If the test is

valid, the vector Mj is sent to the stream M ′, otherwise it is sent to the R stream. A

function f10 ∶ PhotosGraphStruct → BlocksStruct can then be defined to convert the

data type of elements in R to BlocksStruct. This is by copying the iteration number

and generating a list of blocks from the vertices of the blocksgraph in every element of the

stream R. The Map operator parametrized by the function f10 can be used to produce

the feedback stream F ∶ S ⟨BlocksStruct⟩:

F ≜Map(f10)(M2). (3.29)

Notice that the stream F is merged with the stream Q using the Add operator of Equa-

tion 3.26 to produce the stream P . This completes the description of the single-loop

feedback loop defined by [105]) for iterative optimization.

3.3 Discussion

In previous sections, we presented several examples that show the ability of our stream

algebra to naturally describe several computer vision algorithms. Using the stream

algebra, we expressed the vision pipeline of each example using formal algebraic equations

that manipulate vision streams. This provides an abstract representation that highlights

the semantics of the different algorithmic components of computer vision algorithms and

simplifies the process of building scalable computer vision systems.

The stream algebra provides operators for data processing and rate control. The

data-processing operators implement data transformations on the input vision streams.

The rate-control operators manipulate the data rates and flow of data. Examples of these

operators include Cut, Latch, and LeftMult. Rate-control operators can resolve blocking

and slow operations by synchronizing and matching between the different data-flow rates

of vision streams, thus supporting real-time streaming. For example, the Latch and Cut

Chapter 3. Scalable Computer Vision Systems 70

operators decouple the data-flow rates of the input and output streams. Latch maintains

the last received element and outputs it according to the downstream data rate. The

LeftMult operator also matches the data-flow rates of two input streams. In the alge-

braic description of the online tracking example (see Section 3.2.2), Equation 3.17 shows

how LeftMult can latch on the feedback stream F ∶ S ⟨Params⟩, multiply it by the stream

U ∶ S ⟨FrameInfo⟩ to produce the output stream Q ∶ S ⟨TrackInput⟩. If streams F and U

have different data-flow rates, LeftMult guarantees that each incoming element in U has

the most recent parameter setting attached to the corresponding element in the output

stream Q. If we replace the Copy operator of Equation 3.19 with Cut, the feedback loop

of the online tracking example will have its data-flow rate decoupled from the feedfor-

ward pipeline. In large-scale systems, the rate-control operators allow synchronization

between the data-flow rates of different computer vision tasks in vision stream-processing

pipelines. This provides the important advantage of handling unbounded data rates of

continuous (and possibly infinite) vision streams.

In previous sections, we presented several examples that show the ability of our stream

algebra to naturally describe several computer vision algorithms. We expressed the vi-

sion pipeline of each example using formal algebraic equations that manipulate vision

streams. For each algorithm, we decompose it into a set of stages. Each stage defines

a core function wrapped by one of our common data processing operators, that include

Map, Reduce and Filter. Then, the flow control operators handle and manipulate the

data flow between core functions. So, our algebra controls and hides both concurrency

and data flow between core algorithmic functions. The algebra provides an abstract

representation that highlights the semantics of the different algorithmic components of

computer vision algorithms and simplifies the process of building scalable computer vi-

sion systems. For example, we were able to decompose the activity recognition algorithm

by [145] (see Section 3.1.5) into a set of core functions, which are described by the Map

and Reduce operators of our algebra. Notice that these core functions are usually stan-

Chapter 3. Scalable Computer Vision Systems 71

α1 α2 αi αk

Iin
δ0

// X1
δ1

// X2
δ2

// ⋯
δj−1

// Xj

δj

// ⋯
δk−1

// Xk
δk

// Iout

(a)

∑k
i=1αi

Iin
δ0

// X1,X2, ...,Xj, ...,Xk

δk

// Iout

(b)

∑3
i=1αi ∑j

i=4αi ∑k
i=j+1αi

Iin
δ0

// X1,X2,X3
δ3

// X4,X5, ...,Xj

δj

// Xj+1,X2, ...,Xk

δk

// Iout

(c)

Figure 3.2: An example of a pipelined versus a non-pipelined (sequential) implementa-
tion: a) feedforward streaming pipeline defined by the set of data processing operators
X = {X1, ..,Xk}; b) a non-pipelined implementation of (a); (c) the linear pipeline in
(a) partitioned into three intervals. For i ∈ {1, .., k}, αi defines the computation time of
operator Xi. For j ∈ {1, .., k − 1}, δj defines the communication time for transferring the
output of operator Xj to operator Xj+1. The communication time for receiving the input
and producing the output is defined by δ0 and δk, respectively. Each interval in (c) has
its operators’ core functions merged together using function composition.

dard computer vision operations such as extraction of visual words and construction of

integral histograms. The algebraic expressions also highlight how the core function is in-

tegrated with other functions to construct the required algorithms. Moreover, algebraic

expressions show the intermediate transformations on the streams required to integrate

core functions. For example, Equation 3.1 shows the buffering of incoming video frames

to form clips and the filtering of empty clips. Equation 3.15 shows the use of function

g1 that maintains the detected objects within a temporal window. We can also scale up

the pipeline of the activity recognition algorithm to process multiple videos as shown

in Figure 3.3b. Here, we apply a parallel processing pattern formed using a Scatter,

ListMap, and Merge operators to execute multiple pipelines in parallel. Scatter receives

Chapter 3. Scalable Computer Vision Systems 72

the stream V ∶ S ⟨Frame ×R⟩, where each element (f,vid) ∈ V contains a video frame f

and a video identifier vid. Scatter makes sure that frames belonging to the same video

are forwarded to and processed by the same pipeline. Merge then combines the output

predictions of the parallel pipelines to produce the output activity stream A ∶ S ⟨R+⟩.

Figure 3.2 shows an example of a pipelined versus a non-pipelined implementation of

algorithms. Figure 3.2a shows a feedforward pipeline X = {X1, ...,Xk}, that can represent

one of the feedforward pipelines that describe computer vision algorithms in Section 3.1.5.

Each operator Xi wraps a core function that has a computation time αi, where i ∈

{1, .., k}. Moreover, the communication time for transferring the output of operator Xj

to the next operator Xj+1 is defined by δj, where j ∈ {1, .., k−1}. The communication time

for receiving the input and producing the output is defined by δ0 and δk, respectively.

The efficiency of a pipelined versus a non-pipelined (sequential) implementation of a

given algorithm is described in terms of throughput and latency. For the pipeline X,

the throughput is Tp = 1/Pp, where Pp = max{α1, ..αk, δ0, ..., δk} is the period defined as

the largest communication or computation time in the pipeline. The throughput of a

non-pipelined implementation is Tn = 1/Pn, where Pn = max{∑k
i=1αi, δ0, δk}. A pipeline

has a better throughput as long as Tp > Tn. This can be achieved when max{δ0, ..., δk} <

∑k
i=1αi, in other words, the largest communication time in a pipeline is less than the total

computation time of all algorithm stages. Notice that δ0 and δk are usually very small

and negligible compared to other computation and communication costs. The latency

of a pipelined implementation is Lp = δ0 + ∑n
i=1{αi + δi}, which defines the total time

between the entry and exit times for a given tuple. For a non-pipelined implementation,

the latency is Ln = δ0 + δk +∑n
i=1αi. It is clear that Ln < Lp, so the penalty we have for a

pipelined implementation is the additional communication time required for transferring

data between the pipeline stages or operators.

Several optimizations can also be allowed on computer vision pipelines to tune perfor-

mance and improve the allocation of computational resources. For example, the Map(f1)

Chapter 3. Scalable Computer Vision Systems 73

○ // ○

&&○ Scatter //

88

&&

○List-map// ○ Merge // ○

○ // ○

88

(a)

Reduce // Filter // Map // Map // Reduce // Map // Reduce // Map

##
⋮ ⋮ ⋮ ⋮

Scatter //

99

%%

Reduce // Filter // Map // Map // Reduce // Map // Reduce // Map // Merge

��
⋮ ⋮ ⋮ ⋮

V

OO

Reduce // Filter // Map // Map // Reduce // Map // Reduce // Map

;;

A

(b)

Figure 3.3: Expressing a concurrencyparallel processing pattern in our stream algebra:
(a) a parallel processing pattern using Scatter, ListMap, and Merge operators; (b) ap-
plying the parallel processing pattern in (a) to scale up the activity recognition pipeline
discussed in Section 3.1.5 and process incoming video frames in parallel.

operator followed by another Map (f2) operator can be replaced by a single Map (f2(f1))

using function composition. A Reduce operator followed by the Map operator can be

replaced by a single Reduce operator that applies the mapping function to its output.

These optimizations can minimize the latency of a pipeline by eliminating large commu-

nication costs. In this case, we can trade off and optimize throughput versus latency

using load balancing methods [25, 26, 24]. These methods partition a linear pipeline of

n operators (see Figure 3.2a) into a set of k groups (or intervals) such that the latency

(sum of costs) per group is minimized. Figure 3.2c shows an example of partitioning the

linear pipeline in Figure 3.2a into three intervals. Each interval has its operators merged

together into one operator. If k represents the number of available cores in a multi-core

computing platform, then merging operators into k intervals improve the allocation of

computational resources. We aim to study these load balancing problems in the future.

The Map operator can be also replaced by the parallel processing pattern in Figure 3.3.

The runtime can dynamically choose between these different implementation plans to

Chapter 3. Scalable Computer Vision Systems 74

maximize performancethroughput and reduce latencies required to move data between

concurrent stream-processing operators.

Moreover, the Map and Reduce operators receive a list of functions as input. These

functions can be different algorithms that perform the same task but with different

accuracy and runtime profiles. For example, different algorithms exist for foreground

segmentation or stereo vision. This enables dynamic reconfiguration by allowing the

data-processing operators to switch between different functions at runtime. This is very

important in large-scale systems processing a large number of incoming streams with

different data rates. An incoming stream may have its data-flow rate change at a much

faster rate. In this case, the pipeline may decide to switch the current processing functions

to faster functions to match the new incoming data-flow rate. This decision can be

performed dynamically using the feedback-control mechanisms of our stream algebra.

Therefore, our algebra opens a new research direction in enabling dynamic reconfiguration

in large-scale computer vision pipelines.

Our algebraic description of feedback control also creates new research problems in

optimizing large-scale computer vision pipelines. These problems include resource re-

allocation, parameter tuning, and performance tuning. For example, our algebra fits

naturally in describing the single-loop feedback control for the online tracking exam-

ple [47] in Section 3.2.2. One can also extend this example to a multi-loop feedback

control by tuning the parameters of both the tracking algorithm and the HOG-based

people detector algorithm [53] used to locate moving objects. Figure 3.4a shows the

pipeline of [47] expressed in our stream algebra with single-loop feedback control to tune

the tracking algorithm. Figure 3.4b shows that we can also create a second feedback

control loop to tune the people detector algorithm [53]. Notice that the second feed-

back loop is independent and starts by applying a Cut operator to sample the stream

B ∶ S ⟨List ⟨Object⟩⟩, which defines the output of the people detector algorithm. This

results in the return stream R′ ∶ S ⟨List ⟨Object⟩⟩. A Reduce operator can then take the

Chapter 3. Scalable Computer Vision Systems 75

Map
B
// Reduce

M

��
V // Copy

V2

//

V1

OO

Mult
U
// LeftMult

Q
// Map

J
// Copy

R
��

// J ′

Reduce
F

OO

Reduce
H
oo

(a)

Reduce
F ′

��
LeftMult // Map // Cut

B
//

R′

oo

Reduce
M

��
V // Copy

V2

//

V1

OO

Mult
U
// LeftMult

Q
// Map

J
// Copy

R
��

// J ′

Reduce
F

OO

Reduce
H
oo

(b)

Figure 3.4: Extending the single-loop feedback control of the online tracking example [47]
to multi-loop feedback control: (a) the derived pipeline with single-loop feedback con-
trol for tuning the parameters of the tracking algorithm; (b) the pipeline with a second
feedback control loop for tuning the parameters of the HOG-based people detector algo-
rithm [53].

R′ stream as input, locate objects that are strong candidates for people, fine-tune the

learned people model used by [53], and output a stream F ′ of fine-tuned models. Later,

a LeftMult operator is applied to attach with every incoming frame in the V1 stream, a

fined-tuned model from the F ′ stream. The LeftMult operator then produces the input

stream of the Map operator that updates and executes the people detector algorithm.

Thus, theThis example shows that multi-loop feedback control can be applied to differ-

ent operators in a large-scale computer vision pipeline. Moreover, multi-loop feedback

control can be applied in vision pipelines with multiple output streams. In this case, a

different feedback loop can be defined for each output and rate-control operators, such as

Cut and Latch, which can be used to decouple the data-flow rates of the feedback loops

from the forward pipelines.

The iterative optimization example presented in Section 3.2.2 shows that our for-

mal feedback-control description can be used to express and scale up tasks, such as

Chapter 3. Scalable Computer Vision Systems 76

incremental evaluation and adaptive learning. Pipeline instrumentation is also an impor-

tant problem that requires further research, such as enabling performance monitoring,

real-time debugging, bottleneck identification, and blocking resolution. Such tasks are

important in developing and operating large-scale computer vision pipelines processing

unbounded datasets. Other open research problems also include stream clustering and

online classification of large-scale data.

3.4 Algebra Implementation

We implemented the stream-algebra framework in the Go language, which has good

support for building scalable and concurrent systems. For example, the stream reading

and writing functions x← s and x→ s defined by our algebra are equivalent to channels in

the Go language. The framework also supports OpenCV, 1 which allows programmers to

access a larger set of computer vision algorithms when writing Map and Reduce operators.

A special set of Map operators was also developed for viewing images and plotting graphs.

The algebra implementation defines a programming interface for developers to compose

pipelines using algebraic operators that can be chained together.

3.4.1 Algebra Implementation in Go Language

The full source code of our implementation is given in Appendix C. In this section, we are

going to discuss the Map operator as an example for implementing the algebra operators

in Go language. Then, we will show how it can wrap a function that performs Canny

edge detection [41]. Finally, we will see the implementation of a simple pipeline that

reads a stream of images and extracts edges from each incoming image. Notice that we

will only focus our discussion on the important implementation details.

The key data structure in the algebra implementation is NProcessesor (see Sec-

1OpenCV: https://opencv.org/ (last accessed 2 September 2017).

Chapter 3. Scalable Computer Vision Systems 77

tion C.1 for full definition). This data structure represents a generic operator that follows

Definition 3.1.9. The key fields in this data structure are:

1 type NProcessor struct {

2 *ProcessorInfo

3 Inputs []chan T

4 Outputs []chan T

5 F func(inputs ...chan T) []chan T

6 G *OGraph

7

8 }

The Inputs and Outputs fields are arrays of Go channels. A Go channel is a pipe

connecting concurrent go-routines, and a go-routine is a thread that is executed indepen-

dently. So, a channel represents an incoming or an outgoing stream. The function F is

the main operator function. It receives one or more incoming streams and produces one

or more outgoing streams. The G field is a pointer to the workflow graph that contains

the operator. The graph is defined using the OGraph data structure, which contains the

following key fields (see section C.2):

1 type OGraph struct {

2 *graph.Graph

3 nodes_map map[string]graph.Node // a map for storing graph nodes

4

5 edges_info map[string]*EdgeInfo // a map for storing input and output edges (channels)

6

7 }

The OGraph data structure inherits from a graph data structure to define a workflow graph

that represents a streaming pipeline. Nodes represent operators and edges represent

connections between operators. The data structure is augmented with additional fields

that define the connections between the operators in a streaming pipeline. The nodes map

Chapter 3. Scalable Computer Vision Systems 78

field is a map data structure used for fast lookup of a graph node associated with a certain

operator. The edges info field defines the edges of each operator with each edge storing

data for input and output channels.

The NProcessesor data structure also inherits from the ProcessorInfo data struc-

ture. ProcessorInfo defines the user-defined mapping functions that process incoming

data tuples. It is defined as,

1 type Functions []*Function

2 type ProcessorInfo struct {

3 Name string

4 _type int

5 Funcs Functions

6 FuncIdx int //Current active Function

7 }

This data structure has the Name field that defines a unique name for the operator, the

Funcs field that represents a list of user-defined functions, and the FuncIdx field that

defines the index of the current active user-defined function. The structure also has the

type field that defines the operator type as either Map, Reduce, Cut, Latch,.., etc. The

Function data structure is defined as follows:

1 type T interface{} // hold values of any type

2 type Parameter struct {

3 Value float64

4 Low float64 // lower bound

5 High float64 // upper bound

6 }

7 type Params map[string]Parameter

8 type Function struct {

9 FuncName string

10 FuncParams Params

11 State T

Chapter 3. Scalable Computer Vision Systems 79

12 Mapper func(T, Params) T

13 Reducer func(T, T, Params) (T, T)

14 }

This data structure is used by users to define data processing functions. It has the

FuncName field that defines a unique function name. The function can be stateful or

stateless. If stateful, the user defines both the State field and the Reducer function.

In this case, the function is used by a Reduce operator as per Definition 3.1.11. If

stateless, the user defines the Mapper function and leaves the State and the Reducer fields

undefined. The function is then used by a Map operator as per Definition 3.1.10. The

FuncParams field defines a map of parameters, where keys and values represent parameter

names and their values, respectively. Notice that the Parameter data structure defines

current value, upper-bound, and lower-bound of the parameter.

Using the previously discussed data structures, a Map operator can be defined as

follows:

1 func (g *OGraph) Map(funcs Functions, attribs ...T) *aGraph {

2 proc := g.NewProcessor(nil, []chan T{make(chan T)}, OP_MAP)

3 proc.Funcs, proc.FuncIdx = funcs, 0

4

5 proc.F = func(inputs ...chan T) []chan T {

6

7 proc.Inputs = inputs

8 go func() {

9

10 for {

11 x, ok := <-proc.Inputs[0]

12 if !ok {

13 break

14 }

15

16 UpdateSettings(proc.ProcessorInfo, x)

Chapter 3. Scalable Computer Vision Systems 80

17 params := proc.Funcs[proc.FuncIdx].FuncParams

18 y := proc.Funcs[proc.FuncIdx].Mapper(x, params)

19

20 proc.Outputs[0] <- y

21 }

22 }()

23 return proc.Outputs

24 }

25 return &aGraph{g, proc}

26 }

The Map operator is defined according to Definition 3.1.10. It takes as input, a list of

user-defined functions and set of optional attributes. Remember that Map receives a sin-

gle input stream and produces a single output stream. An instance of the NProcessesor

data structure is created in line 2 with only one output channel defined. We then as-

sign the list of functions to the Funcs field of the NProcessesor structure. In line 5,

we define the operator main function that receives incoming streams and produces the

outgoing streams. Line 7 assigns the array of incoming streams to the Inputs field of

the NProcessesor structure. In the case of Map, this array has only one stream. Line

8 executes a go-routine for the Map operator. This routine runs a loop that reads each

incoming element from the input stream (or channel) and tests if the stream is closed or

not. The UpdateSettings function in line 16 is the lookup function that examines the

header of the incoming element. It also updates the index of the current active mapping

function and its list of parameters. Line 17 then executes the current active Mapper

function. The output is then forwarded to the output stream in line 19. Notice that the

aGraph data structure, used in line 24, is a wrapper for the algebra operators and is used

for chaining and connecting operators in an operator graph.

To define a simple pipeline that performs edge detection using a Map operator, the

following Canny function is defined using OpenCV,

Chapter 3. Scalable Computer Vision Systems 81

1 func Canny(x T , z Params) T {

2 var (image, gray *opencv.IplImage

3 t1, t2 float64 = 60, 180)

4

5 if thr, ok := z["thr1"]; ok {t1 = thr.Value}

6 if thr, ok := z["thr2"]; ok {t2 = thr.Value}

7 image = x.(*opencv.IplImage)

8 gray = opencv.CreateImage(image.Width(), image.Height(), opencv.IPL_DEPTH_8U, 1)

9 opencv.CvtColor(image.Ptr(), gray.Ptr(), opencv.CV_BGR2GRAY)

10 opencv.Smooth(gray.Ptr(), gray.Ptr(), opencv.CV_BLUR, 3, 3, 0, 0)

11 opencv.Canny(gray.Ptr(), gray.Ptr(), t1, t2, 3)

12 edges := FindEdges(gray)

13 gray.Release()

14

15 return T[]{image, edges}

16 }

Notice that the Canny function receives an input image x and a list of parameters z. Here

the parameters are the two popular thresholds used by the Canny edge detector. The

function executes several OpenCV operations to extract the list of edges and returns a

vector containing both the input image and the detected edges.

In order to produce the source stream of images, we define the following generator

function that uses OpenCV to read a sequence of 1000 images stored on disk,

1 type Spout struct {ci int}

2 func (sp *Spout) Read() loopy.T {

3 x= opencv.LoadImage(fmt.Sprintf(data/%s.jpg, string(sp.ci))

4 sp.ci++

5 If sp.ci > 1000 {return STOP}

6 return x

7 }

The STOP signal informs a Source operator to terminate. Now, we can construct the

Chapter 3. Scalable Computer Vision Systems 82

following pipeline for edge detection,

1 g := NewOGraph("graph")

2 spout := &Spout{}

3 detect_edges := alg.Functions{&alg.Function{

4 FuncName: "canny",

5 Mapper: Canny,

6 FuncParams: alg.Params{"thr1": alg.Parameter{Low: 0, High: 255, Value: 60},

7 "thr2": alg.Parameter{Low: 0, High: 255, Value: 180}}}}

8 view_edges := alg.Functions{&alg.Function{

9 FuncName: "view_edges",

10 Mapper: ViewEdges}}

11

12 g.Source(spout).Map(detect_edges).Map(view_edges).Ground()

13 g.Execute()

Notice that the pipeline starts by creating a new workflow graph in line 1. Then, the

object spout is defined in line 2. This object implements the Read generator function.

Line 3 defines a list of functions that only contains the Canny Mapper function. The

parameters of the Canny edge detector is also defined. Similar to the definition of the

Canny Mapper function, we also define the ViewEdges Mapper function that displays the

extracted edges. The pipeline is constructed in line 8 and starts by creating a Source

operator that receives the spout object. A Map operator is then applied on the output

stream of the Source operator to extract edges using the Canny function. The operator

produces a stream containing images and their extracted edges. Another Map operator is

then applied to display the extracted edges. Finally, a Ground operator ends the pipeline.

Similar to the definition of the Canny Mapper function, we wrap several OpenCV

functions into either Mapper or Reducer functions. So, a new OpenCV interface is

defined that is compatible with our algebraic operators.

Chapter 3. Scalable Computer Vision Systems 83

source // map // map // reduce // map // ground

(a)

map // reduce

!!
// copy //

>>

reduce // map // merge //

Map // reduce

==

(b)

map // LeftMult // map // reduce // cut //

oo

map
��

source

OO

reduce

OO

ground

(c)

Figure 3.5: Different examples of workflow graphs: (a) pipeline graph; (b) fork-join graph;
and (c) pipeline graph in (a) with a feedback-control loop.

3.4.2 Building Pipelines Using the Algebra Implementation

To build a pipeline using our algebra implementation, an operator graph should be defined

by chaining the data-processing and flow-control operators. For example, to implement

the feedforward pipeline in Figure 3.5a, for the mapping operators, we assume the three

list of functions f1, f2, and f3 and the set of parameters p1, p2, and p3. For the Reduce

operator, we also assume a list of functions g1, a state variable u1, and a set of parameters

q1. For the Source operator, a generator function h and a state variable u0 are defined.

The pipeline can then be written using our algebra Go language implementation as

follows:

1 g := NewGraph("fork-join")

2 g.Source(u0, h).Map(f1, p1).Map(f2, p2).Reduce(u1, g1, q1).Map(f3, p3).Ground()

3 g.Execute()

Chapter 3. Scalable Computer Vision Systems 84

Notice that a graph g is initially defined, and the dot operator is used to add the algebra

operators and chain them together. Here, the dot operator forwards the output stream

of its left operand to the input stream of its right operand. The Source operator can

generate an image or video stream that can be later processed by subsequent operators

until we reach Ground. The Execute() function distributes the pipeline tasks to available

computational resources and concurrently executes the operators.

Computer vision pipelines with parallel processing patterns, such as the pipeline in

Figure 3.5b, can be also implemented in our algebra using the following Go language

code:

1 g := NewGraph("fork-join")

2 g.Copy(3, "cp")

3 g.Merge(f, "mrg")

4 g.Map(f1, p1, "m1").Reduce(u1, g1, q1,"r1")

5 g.Reduce(u2, g2, q2, "r2").Map(f2, p2, "m2")

6 g.Map(f3, p3, "m3").Reduce(u3, g3, q3, "r3")

7 g.LinkOut("cp", "m1", "r2", "m3")

8 g.LinkIn("mrg", "r1", "m2", "r3")

9 g.Execute()

Again, line 1 defines a new empty operator graph and assigns it a name. The next lines

then add operators to the graph using the dot operator. Here, each operator takes an

extra argument that defines a unique operator name. Line 2 defines the Copy operator.

Line 3 defines the Merge operator, which takes a function f to merge elements of the

incoming streams. Lines 4, 5, and 6 define the three parallel branches in Figure 3.5b. To

link these branches with the Copy and Merge operators, two special functions are defined,

LinkOut and LinkIn. Both functions take a list of strings, with each string defining a

unique operator name. Lines 7 and 8 use the LinkOut and LinkIn functions to connect

the operator graphs together. Finally, line 9 executes the graph.

The LinkOut function starts by obtaining the list of unassigned output channels of

Chapter 3. Scalable Computer Vision Systems 85

its first input operator. The function also creates a list of input channels containing

the unassigned input channels of all other given operators ordered by their position

in function arguments. Output channels are then linked to their corresponding input

channels.

The LinkIn function operates in a similar manner. The function obtains the list

of unassigned input channels of its first input operator. The function creates a list of

output channels containing the unassigned output channels of all other given operators

ordered by their position in function arguments. Then, input channels are linked to their

corresponding output channels.

We can also implement feedback control using our stream-algebra implementation.

Figure 3.5c shows a similar pipeline to Figure 3.5a, but with feedback control defined.

This pipeline can be implemented as follows:

1 g := NewGraph("feedback")

2 g.Source(u0, h). Map(f1, p1,"m1")

3 g.LeftMult("lm").Map(f2, p2).Reduce(u1, g1, q1).Cut("ct")

4 g.Map(f3, p3,"m3").Ground()

5 g.Reduce(u4, g4, q4, "r4")

6 g.LinkOut("ct", "m3", "r4")

7 g.LinkIn("lm", "m1", "r4")

8 g.Execute()

Here, line 1 creates the graph. Line 2 defines the branch that contains the Source

operator. Line 3 defines the feedforward branch controlled by the feedback loop. Line

4 defines the output branch that contains Map followed by Ground. Line 5 defines the

Reduce operator of the feedback loop branch. Lines 6 and 7 link all branches together

using the LinkOut and LinkIn functions. Finally, the graph is executed on line 8.

The previous examples show the ability of our stream-algebra implementation in defin-

ing and executing computer vision pipelines. Moreover, higher-order operators defined

in Section 3.1.4 can be used similarly to scale up computer vision pipelines to process a

Chapter 3. Scalable Computer Vision Systems 86

large number of continuous and possibly infinite vision streams.

Chapter 4

Efficient Computer Vision

Functionals: Pixel Labelling

Discrete pixel labelling is an important area of computer vision that includes a set of

fundamental problems, such as interactive image segmentation, stereo vision, optical

flow, multi-view image mosaicing, and object recognition. The approaches for solving

these problems are usually cast within energy minimization. They involve an assignment

problem f ∶ LL → P that selects the label of minimal cost l ∈ LL from a set of labels

LL for each image pixel p ∈ P . The costs are represented as a 3D volume w × h × L for

L = ∣L∣ and an image of width w and height h. This volume is called the cost volume and

has each slice recording the assignment costs of a certain label. A solution is found by

minimizing the total assignment cost.

Global optimization based on Markov random fields (MRF) is a traditional approach

for obtaining solutions; however, it is computationally expensive. Local optimization

methods provide a more efficient alternative. These methods rely on local cost filtering

and aggregation and are referred to as cost-volume filtering. Local methods, however, still

need to traverse and filter the entire cost volume. This renders their performance very

slow in processing large cost volumes usually found in optical flow and high-resolution

87

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 88

images.

In this chapter, we present our sparse cost-volume filtering approach, which restricts

local filtering and aggregation to a selected set of salient sub-volumes, resulting in a

significant improvement of performance. We discuss two techniques for selecting the sub-

volumes, the feature-based and segmentation-based methods. The feature-based method

depends on feature matching and keypoint detection, whereas the segmentation-based

method relies on superpixel segmentation and nearest-neighbour fields. We also present

an occlusion handling (OH) technique to fill occluded regions resulting from incorrect

label assignments. This is performed using a label propagation method inspired by

simulated annealing [68]. A complexity analysis of our methods shows a linear complexity

O(n) for the segmentation-based method, where n = w ×h, and O(n× k) for the feature-

based method, where k is the number of keypoints. We are interested in two important

types of pixel-labelling problems, optical flow and stereo vision; however, our method is

general and applicable to other labelling problems, such as image segmentation.

The proposed method is described in our stream algebra and implemented as a mult-

GPU streaming pipeline. The pipeline can process image and video streams at near

real-time rates. We also discuss how our stream algebra can scale up the pipeline to

utilize the available GPU resources and process multiple video streams simultaneously.

The contributions of this chapter are: (1) we present the sparse cost-volume filtering

approach that achieve state-of-the-art runtime performance numbers for pixel labelling

problems, on standard optical flow and stereo vision benchmarks; (2) we develop two

methods for efficiently identifying salient sub-volumes within cost volume based on fea-

ture matching and superpixel segmentation; (3) we show that the sparse cost-volume

filtering approach can be implemented with a computational complexity linear in the

image size and independent of the label space size; and (4) we propose a robust gap

filling strategy for occlusion handling and refinement of computed label assignments.

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 89

4.1 Introducing Pixel-Labelling Problems

In this chapter, we focus on two instances of pixel-labelling problems, optical flow and

stereo vision. Generally, the desired solution defines a map that (i) has spatial smooth-

ness, (ii) matches assignment costs, and (iii) respects image edges respects 3D surface

boundaries. Given an image pair, optical-flow estimation is a fundamental problem in

computer vision. Optical flow describes two-dimensional (2D) motions of objects (usu-

ally individual pixels) between the two images, and it is often the first step in many

computer vision techniques, such as motion detection, object segmentation, video encod-

ing and compression, scene analysis, activity recognition, etc. Many of these techniques

treat optical flow as a pixel-labelling problem, where each label l ∈ L is a 2D vector

(u, v) describing the pixel displacement between two input images [50, 18, 123, 91]. De-

spite great advances in optical-flow estimation since the early seminal works by Horn

and Schunck [89] and Lucas and Kanade [124], we still need better methods for dealing

with large-displacement optical-flow estimation. Most existing methods for optical flow

ignore higher-order terms in the optical-flow constraint equation, which leads to poor

performance when dealing with large motions [62]. For stereo vision, there has been

substantial interest in developing pixel-labelling techniques to estimate disparity maps

from stereo image pairs [91]. The label l ∈ L is defined as a disparity value d, and the

goal is to assign a disparity to each pixel.

Both optical flow and stereo vision can be formulated based on MRFs and be solved

using global optimizers [54]. The assignment cost is typically written as an energy func-

tion with two terms: a data term and a smoothness term. The data term accounts for

per-pixel label assignment, whereas the smoothness term considers labels assigned to

neighbouring pixels. A solution can then be obtained using traditional energy minimiza-

tion algorithms, such as graph cut [33] and belief propagation [171, 157, 57]. Though these

techniques give reasonably accurate results, they have a large computational cost, which

limits their applicability to large label spaces usually found in high-resolution images.

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 90

Moreover, dealing with large-displacement motions requires that we expand the label

space, increasing the size of the cost volume. This leads to increased memory require-

ments and longer processing times. It may also result in noisier final optical flow [184].

Local filtering methods [121, 91, 123], on the other hand, provide an efficient alternative

by providing locally and spatially smooth label assignments against the globally smooth

assignments produced by MRFs.

Local filtering was first applied by [179] and [144] for stereo vision. The method

by [179] had a high computational cost and had little value compared to global optimiza-

tion, whereas the technique of [144] approximated filtering using a fast implementation

that provides a considerable speed increase with a loss of accuracy. The benefits of local

methods for pixel-labelling problems have been shown by Hosni et al. [91], where edge-

aware guided filters have been used to achieve high-quality results comparable to the

global optimization methods for different pixel-labelling problems, including optical flow

and stereo vision. Edge-aware filtering (EAF) was chosen for its linear-time complexity

that does not depend on filtering the kernel size.

Lu et al. [121] developed a much faster filtering algorithm based on multi-point regres-

sion. The same authors [123] extended the work further by developing the PatchMatch

filter, which combines EAF with the PatchMatch algorithm. Their work provided a much

further speed increase with a sublinear complexity in the label space size.

Given the current trend to pack more pixels per image, we also need more efficient

methods for solving pixel-labelling problems. We envision that these methods will be able

to trade accuracy versus speed, adapting to imaging artifacts, such as large motions,

motion blur, occlusions, etc., and leveraging the available hardware in the best way

possible. Motivated by this vision, our sparse cost-volume filtering approach allows large-

displacement optical-flow and stereo-vision estimation. It relies upon sparse processing,

which can be tuned to achieve the desired accuracy versus speed balance.

There are several advantages of the feature-based and segmentation-based methods.

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 91

They leverage sparse filtering to achieve state-of-the-art runtime performance numbers on

two standard benchmarks. They also allow efficient identification of salient sub-volumes

within the cost volume. Moreover, an OH scheme is developed for filling gaps resulting

from parallax and erroneously labelled regions that can be applied independently as a

refinement step for improving initial label assignments of other methods [91, 121]. Finally,

the computational complexity of our superpixel-based method is linear in the image size

and independent of the size of the label space.

4.2 Cost-Volume Filtering

Given an input image pair (I1, I2), our goal is to assign a label l = (u, v) ∈ L to each pixel

(x, y) ∈ I1. The label represents the displacement of pixel (x, y) ∈ I1 to (x + u, y + v) ∈ I2,

and L is the label space. It is easy to extend this idea to multiple images (I1, I2,⋯, In).

In this case, without the loss of generality, the first image I1 is usually referred to as the

reference image Ir, and we deal with image pairs of the form (Ir, Ik), where Ik ∈ {I2,⋯, In}.

Our methods follow the general framework of a local correspondence search for com-

puting optical flow [91]. The framework consists of three steps. The first step uses pixel

correspondences to set up a cost volume C(x, y, l), which stores the cost of assigning a

label l ∈ L to a pixel (x, y). The second step aggregates costs at each cost slice using

EAF. The last third step picks the optimal label assignment for each pixel to minimize

the overall cost of label assignment. A final step is often used to further refine label

assignments, including assigning missing labels. In the case of optical-flow estimation,

the desired solution to this label assignment problem is spatially coherent, follows label

assignment costs, and preserves edge discontinuities. During filtering, each slice l of the

cost volume is processed as follows:

C ′(x, y, l) =W(x,y) ⊗C(x, y, l), (4.1)

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 92

where the kernel weights W(x,y) ∈ R(2q+1)×(2q+1) for window ω(x,y), centred on (x, y), de-

pend on the reference image and are computed for every (x, y). The kernel radius is

q. The symbol ⊗ denotes the convolution operator. The reference image is often called

the guidance image. Many schemes select W(x,y) to maintain the intensity changes and

preserve the edges of the guidance image [74, 184, 129]. In this work, we use the method

proposed by [74] to compute W(x,y). Given i = (x, y) and j = (x′, y′) such that j are

neighbours of i in ωi, we have the weight Wi(j) = 1
(2r+1)2 ∑k∶i,j∈ωk (1 + (Ir(i)−µk)(Ir(j)−µk)

σ2
k
+ε),

where µk and σ2
k are the mean and variance of Ir in ωk, and ε is a regularization pa-

rameter. The selection step applies a winner-takes-all strategy to pick a label in L that

minimizes the assignment cost for each pixel p at location (x, y):

lp = arg min
l

C ′(x, y, l). (4.2)

Cost-volume filtering is linear in the size of label space, which makes these techniques

slow for large L [91, 184]. To build the cost volume C(x, y, l), several strategies can be

used depending on the application. For example, in [83], we use the fronto-parallel plane

sweep algorithm by [64] to generate a discrete set of disparity planes for finding a stereo-

disparity map. This set defines the cost volume. Moreover, [91] assumed a displacement

window of [∆w,∆h] around each pixel for optical flow. Lu et al. [123] considered a

continuous range of labels for optical flow and stereo vision and applied the randomized

search PatchMatch algorithm to locate the best label for each pixel.

4.2.1 Curse of the Label Search Space

The traditional cost-volume-filtering methods [91, 184] are computationally infeasible

for large and continuous label spaces. These label spaces are encountered when dealing

with high-resolution images, large motions, and subpixel-accurate optical flow and stereo

vision. Although dealing with high-resolution images and large motions is straightforward

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 93

for producing large label spaces due to searching for more pixels for a solution, it is not

clear for subpixel accuracy.

During image acquisition, the continuous scene information is quantized into a discrete

set of image pixels; however, we can still fit models that estimate the continuous geometry

of the scene and retrieve colouring information at subpixel accuracy [61]. This allows

finding highly accurate solutions for optical flow and stereo vision at a fraction of a

pixel. Several models have been used for attaining subpixel accuracy. For example,

Hosni et al. [91] uses bicubic interpolation to upscale the input images by a certain scale

factor. To sense how this scale affects the label space size, we consider solving for optical

flow between two input images. For each pixel in the first image, if we assume that we

search a 2D displacement range of [−40,40]× [−40,40] pixels in the second image, then a

scale factor of 8 produces a label space of 81×81×8×8 = 419904 labels. Bleyer et al. [125]

assumed an infinite (continuous) label space for solving subpixel-accurate stereo vision

along horizontal motions. Their algorithm takes two rectified input images with the

radial distortion removed. The algorithm then searches for each pixel p in the input

image, the 3D plane fp from which the pixel is projected. The plane is defined as:

dp = afppx + bfppy + cfp , (4.3)

where dp defines the disparity (or displacement) of pixel p in the first image to its cor-

respondent location in the second image. A label lp = (afp , bfp , cfp) is the set of plane

coefficients defined over a continuous range of values. This simply generates an infinite

label space L. Moreover, the gradient-based methods such as the work of Brox et al. [37]

also naturally recover subpixel accuracy by assuming a continuous model for motion es-

timation.

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 94

4.2.2 Efficient Traversal of Large and Continuous Label Spaces

To solve pixel-labelling problems for large and continuous label spaces, we need efficient

methods to search and traverse these spaces. Bleyer et al. [125] applied the PatchMatch

algorithm for the randomized search of the infinite space of 3D planes. Figure 4.1 shows

the main steps of the PatchMatch algorithm for two images denoted by A and B. Initially,

for each pixel, we define a local window (patch) centred on that pixel. If A is the

reference image, we initialize each patch p in A by a random displacement (label) to a

correspondent patch in B. A matching cost is calculated for the displacement comparing

the two patches. The algorithm iterates between two steps. (1) Labels are propagated

from neighbouring pixels of p, and if the propagated label gives better matching cost

than the current assigned cost of p, the propagated label replaces the current label of p.

(2) A random search is performed around the best displacement in image B to find a

better matching cost. A random search starts with the image size and is halved until we

reach 1. The PatchMatch algorithm converges after a certain number of iterations, and

the solution is referred to as a nearest-neighbour field (NNF). In [125], the displacement

comes from 3D plane coefficients. The matching cost is defined using Equation 4.6 along

only the x dimension (for horizontal motion), where d2 = ∣∇xIr(x, y) −∇xIk(xk, yk)∣, and

the cost aggregation is done using Equation 4.1. The complexity of the algorithm is

O(m logM) for a patch of size m and image with M pixels.O(mM logL) for a patch of

size m, image with M pixels, and a label space size L.

Lu et al. [123] developed a better PatchMatch method with a time and space complex-

ity of O(M logL) and O(M), respectively. Their method starts by dividing the image

into a set of compact superpixels using the simple linear iterative clustering (SLIC) su-

perpixel segmentation algorithm [1]. Rather than defining a patch for each pixel as in the

work by [125], the method defines a single patch for each superpixel with cost matching

and aggregation done at the superpixel level. As in [125], we randomly search the entire

label space.

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 95

Figure 4.1: Three main stages of the PatchMatch algorithm [19].

Chen et al. [50] relied on the concept of dominant motions to locate a set of sub-

volumes inside the cost volume. Then, a multi-label graph cut is used to solve for optical

flow, which results in a high computational cost of around 362 seconds to process an

image of 640 × 480 pixels. Figure 4.2 (left) shows the sub-volumes constructed by [50],

where each sub-volume spans a fraction of the label space and the entire spatial space.

Figure 4.2 (middle) shows the sub-volumes randomly searched by [122], where each sub-

volume spans a small superpixel in the spatial space and the entire label space. Figure 4.2

(right) shows the sub-volumes constructed by our superpixel-based method spanning a

fraction of both the spatial and label spaces.

An obvious direction for building better efficient label space traversal methods is to

detect the sub-volumes that contain the best label assignments. In the next sections, we

discuss our sub-volume detection strategies.

4.3 Selecting Salient Sub-volumes

We discuss two methods for selecting salient sparse sub-volumes inside the main cost

volume. We restrict cost filtering and aggregation to these sub-volumes to obtain reduced

runtime and large gain in the overall performance. The first method relies on feature

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 96

. . .

0
. .

. .
. .

. .
p

p’
q q’

. . .

0
. .

. .
. .

. .
p

p’
q q’

. . .

0
. .

. .
. .

. .
p

p’
q q’

q

q’

p p’

Figure 4.2: Visual comparison of the different methods for locating sub-volumes. Cost
volume is Iheight×Iwidth×L, where Iheight and Iwidth are the image height and width, respec-
tively, and L is the label space size. (Left) Sub-volumes identified by [50] around dominant
motions. (Middle) A sub-volume is defined by [123] for each superpixel (shown in red).
(Right) Sub-volumes are defined using the cost-sub-volume filtering (SVF) method [80]
for each superpixel, around the dominant motion.

matching, and the second method depends on superpixel segmentation and ANNFs.

4.3.1 Feature-based Sub-volumes

Our feature-based approach is based on two main hypotheses: the visibility hypothesis

and the selection hypothesis. In the visibility hypothesis, we can divide each cost slice

into visible and non-visible regions, where the visible regions have the reference image

Iref(x, y) matching the other image Ik(x, y) well. In the selection hypothesis, we can

identify the visible regions as salient regions in the cost volume. We refer to the feature-

based approach as accelerated cost filtering (ACF) [79].

The naive way to find these regions is to traverse the entire cost volume C(x, y, l) look-

ing for the low-cost regions at each slice l. A better way is to extract scale-invariant fea-

ture transform (SIFT) keypoints using feature matching between the input images [118,

35]. Given the matched points, their disparity values can be calculated forming a set of

seeds (x, y, l′) in the cost volume. We can then construct a salient region around each

seed (x, y, l′) by first centring a local window bl′(x, y) on (x, y, l′). If more than one point

exists on the slice l′, we define the salient region as the minimum bounding window bl′

surrounding all bl′(x, y). Each local window bl′(x, y) has its radius chosen as a fraction

r×Iwidth of the reference image width. In this work, r is set to either 0.2 or 0.3. Given the

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 97

(a) CF. % occ. Pix. = 17.6 (b) ACF. % occ. pix. = 19.9 (c) ACF. % occ. pix. = 20

(d) CF. % occ. pix. = 18.46 (e) ACF. % occ. pix. = 18.12 (f) ACF. % of occ. pix. = 18.58

Figure 4.3: Examples of the initial disparity maps generated by our accelerated cost
filtering (ACF) stereo-estimation method [79]. The occluded pixels are shown as black
regions. Top row (Cones): Disparity maps computed before gap filling: (a) result esti-
mated by cost filtering (CF) [91], (b) ACF (r = 0.2), (c) ACF (r = 0.3). Bottom row
(Teddy): Disparity maps computed before gap filling: (d) result estimated by CF, (e)
ACF (r = 0.2), (f) ACF (r = 0.3). Variable r ∈ [0,1] controls the radius of the local win-
dow used around feature points. Specifically, the local window radius is set to r×Iwidth. It
is worth mentioning that our method achieves less occluded pixels for the Teddy dataset.
This shows that our sub-volume filtering scheme can produce more accurate results for
some scenes.

discrete representation of the cost volume, the labels of seeds (x, y, l′) may not match the

location of cost slices well. This problem is solved by considering for each seed (x, y, l′),

a set of neighbouring slices inside the cost volume. Formally, we compute local windows

bl for each cost slice l that has ∥l− l′∥ ≤ ε, and ε is a parameter controlled by the user for

the expansion in the cost-volume space. Figure 4.4 shows the extracted keypoints and

the detected salient windows at two disparity values in a stereo-vision application.

The detected salient regions in neighbouring cost slices define a sparse set of 3D

cuboids inside the cost volume. We call each cuboid a sub-volume. Although the set of

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 98

Figure 4.4: Finding salient regions using our feature-based sub-volume selection method.
The two left figures show projected images at depth planes defined at disparities 10 and
14, respectively.the overlapping between the left and right images at disparity planes 10
and 14, respectively. Each plane is obtained by displacing the right image with respect to
the left image by the disparity value. The detected keypoints identify the best matching
regions in each plane. The last two images define salient local windows (red squares)
around the keypoints. Each plane can have other salient local windows expanded from
neighbouring planes. Expanded windows with their keypoints are shown in white in the
last two figures. Our algorithm defines the final salient region (black rectangle) for each
plane as the bounding rectangle of all defined and expanded local windows. The side
length of each local window is defined as r × Iwidth, (r = 0.2).

detected sub-volumes provides a good summary of the entire cost volume, the feature-

based selection method has several limitations. The first problem is requiring the user

to define the r and ε parameters that may differ between different datasets. Another

problem is relying on the quality and performance of keypoint detection and matching.

4.3.2 Segmentation-based Sub-volumes

To solve the limitations of feature-based sub-volume selection, we need to develop a new

method for dynamically selecting sub-volumes within the cost volume. To do this, we

use dominant motions to summarize the pixel displacements between successive frames.

A dominant motion is the average motion vector for a group of neighbouring pixels in a

pair of images. The idea of dominant motions was used by Chen et al. [50] for optical flow

to handle the noise present in an initial optical flow computed using ANNF. However,

the dominant motions are extracted using a costly motion-segmentation step. Local

perturbations are extracted around each dominant motion to define locally deformed

motions. These motions, together with dominant motions, define a salient range within

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 99

the label space. We extend this idea to cost-volume filtering by observing that dominant

motions can divide cost volume slices into visible and non-visible regions. This is akin to

using keypoint matching for stereo-disparity estimation, as we did in our first sub-volume

selection method [79]. Consequently, it is possible to identify salient sub-volumes in the

cost volume using dominant motions.

We start by using the fast edge-preserving algorithm of [18] to compute ANNF using

the input image pair. Moreover, [18] achieved a speed increase by downsampling the

input images, which degrades the accuracy. Still, the ANNF computed using this method

closely matches the ground truth (optical flow) at numerous pixel locations. In addition,

[50] performed an empirical study that also supports this observation. It highlights the

advantage of using ANNFs for computing optical flow. The ANNF computation does not

constrain the search radius between corresponding patches, which allows it to capture

large motions between two images. Unlike traditional optical-flow estimation schemes,

ANNF computation also preserves small and thin structures. The primary issue with

ANNF-based methods for computing optical flow is the existence of noise and missing

labels for certain pixel locations. We now discuss how to resolve this issue.

We are interested in a fast algorithm for solving pixel-labelling problems. Therefore,

using a costly motion-segmentation step to compute dominant motions to identify the

salient sub-volumes within the cost volume does not serve our purpose. Instead we rely

upon superpixel segmentation to identify the salient sub-volumes [129, 123, 79]. Our

choice stems from the following three observations: (1) The desired solution for opti-

cal flow should be spatially smooth and preserve intensity changes of image edges. (2)

Compact and spatially uniform superpixels respect image boundaries and include pixels

that have a higher chance of sharing similar labels. (3) Processing superpixels reduces

the computation complexity and boosts performance. We use the SLIC superpixel seg-

mentation algorithm [1], which scales linearly with the image size and can be efficiently

computed in real time.

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 100

Specifically, using the SLIC superpixel segmentation algorithm, the input image I is

decomposed into K non-overlapping superpixels S = {Si∣i ∈ [1,K]}. The ANNF com-

puted earlier is then used to compute dominant motion µ and motion variance σ2 for

each superpixel S. Specifically, (u, v) for pixels (x, y) belonging to each superpixel Si

are used to estimate µi and σ2
i ; µi = (û, v̂) is computed using the mean shift algorithm,

and σ2
i = (∑x(u − û)2,∑y(v − v̂)2)/n for n = ∣Si∣. The set Ωµ = {µi∣i ∈ [1,K]} defines K

dominant motions, and the set Ωσ2 = {σ2
i ∣i ∈ [1,K]} defines the motion variances cor-

responding to K superpixels. Together, these sets are used to define a sparse set of K

sub-volumes V = {Vi∣i ∈ [1,K]}. The width and height (defined in the image space) of

sub-volume Vi is determined by the minimum bounding rectangle Bi of superpixel Si and

its depth (defined in the label space) is set such that it contains all labels l that satisfy

∣l − µi∣ < βsσ2
i . For the results presented here, βs (the expansion factor) is set to 1.9. In

practice, we bound the expansion by γs to avoid situations involving very large σ2
i by

ensuring that βsσ2
i ≤ γs.

Figure 4.2 shows a comparison between our method of constructing sub-voltumes

based on superpixel segmentation against other methods. We refer to this method as

the cost-sub-volume filtering (SVF) [80]. Figure 4.2 (left) shows the sub-volumes defined

by [50] around the dominant motion patterns. Here, the sub-volumes span the entire

image space and very small sections of the label space. Figure 4.2 (middle) shows the

searched sub-volumes constructed by [123] for each superpixel, where the image space is

partitioned, but the entire label space is randomly searched. Figure 4.2 (right) shows our

method of constructing sub-volumes that capture the benefits of both [123] and [50] by

partitioning both the label and image spaces.

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 101

4.4 Coarse-to-fine Sub-volumes

From a biological point of view, the human brain performs stereoscopic vision at multiple

hierarchical scales (from coarse to fine) [67]. This motivates the development of coarse-

to-fine approaches for solving pixel-labelling problems, especially optical flow and stereo

vision. For example, Zhang et al. [185] extended the cost-volume-filtering approach for

cross-scale cost aggregation. This is performed by constructing a set of cost volumes at

different scales. Then, Equation 4.2 is extended for the multiscale approach by performing

intra-scale cost aggregation while forcing an inter-scale consistency. Given a pyramid of

multiscale cost volumes, we can use our feature-based sub-volume selection method to

locate salient sub-volumes at each scale. Then, we restrict the cross-scale methods, such

as in [185], to perform cost aggregation only with the multiscale sub-volumes. Notice that

we only need to build the sub-volumes, rather than construct the entire cost volumes.

This saves the time required to both build and process the entire set of cost volumes.

We can also extend our segmentation-based sub-volume selection method to a multi-

scale method by identifying a set of sub-volumes for each superpixel at different scales.

As discussed before, the sub-volume selection in this case depends on the initial ANNFs

computed by the fast edge-preserving PatchMatch method by [18]. In PatchMatch, the

patch size affects both the runtime complexity and accuracy. Larger patch sizes are better

at enhancing EAF and resolving ambiguities of matching costs, thereby producing higher

quality ANNFs. Thus, larger patch sizes are desirable for our method to produce a good

set of sub-volumes. However, it is often not possible to specify the optimal patch size

without knowing the object scales a priori. Therefore, employing multiscale approaches

typically solves such issues.

Thus, for multiscale segmentation-based sub-volumes, we construct an n-level image

pyramid from the input image starting with the input image and downsampling it by

half for successive levels. For all our experiments, we set n = 3. Initial labelling maps are

computed for each level according to [18]. Next, for each superpixel Si in the original

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 102

image, a sub-volume V s
i is constructed at level s using the labels of pixels belonging to

Si at that level, which constructs a set of sub-volumes {V s
i ∣s ∈ [1, n]} for each superpixel

Si. Sub-volumes V s
i share the same bounding box Bi in the original image. These sub-

volumes are subsequently filtered in the original image resolution (i.e., level 1), ensuring

that small and thin structures are not lost during filtering. Downsampling the image while

keeping the patch size constant has been investigated by [150] an unexpected benefit. It

effectively increases the patch size for computing the initial flow maps (using the method

in [18]), improving the quality of sub-volumes. Moreover, it allows sub-volumes defined

at coarse scales to capture large displacements with the modest computational expense.

4.5 Patch-Match for Sub-volume Filtering

To generate labelling solutions from the selected sub-volumes, we need to apply cost

aggregation. The traditional method is to build and filter the 3D cost sub-volumes

spanning the image and label spaces. This is feasible for small and discrete label spaces;

however, it becomes unfeasible for large and continuous label spaces usually found in

high-resolution images and subpixel-accurate optical flow and stereo vision. A better

approach is to randomly search the sub-volumes to find the best label for each pixel.

PatchMatch performs the randomized search efficiently by defining a 2D patch for each

pixel in one image and randomly sampling the other image to search for the best match.

It is independent of the search range and uses the natural homogeneity of image regions

to propagate matches to neighbouring areas. Bleyer et al. [125] built upon this algorithm

to develop PatchMatch Stereo, which randomly traverses an infinite set of 3D planes for

each pixel in the reference image to find the optimal plane at which the pixel matches

its projection to the other image. This infinite set of planes defines a cost volume over a

continuous label space of 3D planes. The method was shown to outperform the traditional

cost-volume-filtering method by [91].

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 103

Given our feature-based sub-volumes, we can restrict the PatchMatch algorithm to

search inside them for optimal labels. However, a better alternative is to avoid the limita-

tions of feature-based sub-volumes selection and restrict PatchMatch to the segmentation-

based sub-volumes. In this case, we can build upon the PatchMatch filter method devel-

oped by Lu et al. [123]. This method outperforms [91, 125] and combines PatchMatch

with EAF for cost-volume filtering. It uses superpixel segmentation to partition the ref-

erence image. Then, it defines a sub-volume for each superpixel that spans the entire cost

volume as shown in the middle image of Figure 4.2. The sub-volume has its width and

height defined as the superpixel boundary. Each slice is a displacement of the superpixel

in the reference image to a correspondent region in the other image. The slice encodes

the matching cost between the two regions.

4.5.1 Algorithm

The segmentation-based sub-volumes are filtered using an extended version of a ran-

domized PatchMatch filter [123] that considers both dominant motions of and local de-

formations within superpixels. Let G = (S,S × S) denote an adjacency graph over the

set of superpixels S. In G, the nodes represent superpixels, and the edges encode the

neighbourhood relationship. Two superpixels are considered neighbours if they share a

boundary. For each superpixel S, the set N (S) denotes its neighbours. PatchMatch is an

iterative technique, and each iteration consists of two steps: label propagation and ran-

dom search. Graph G supports fast superpixel neighbour queries, allowing the efficient

label propagation and random searches used by PatchMatch.

Our algorithm initializes PatchMatch using the ANNF computed earlier and sets up

initial costs C̃(x, y, l) using Equations 4.6 and 4.1. In addition, C̃(x, y, l) stores the

current best (minimal) costs of assigning label l to pixel (x, y). Algorithm 1 summa-

rizes our algorithm. Notice that the aggregate function performs cost aggregation on

superpixel Si using the given label l′. This function sets up a cost slice C(x, y, l′) using

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 104

CF [91] PM [19] PMF [123] DM [142, 170] SVF [80]
Com. O(ML) O(mM logL) O(M logL) O(M2) O(M)
Mem. O(M) O(M) O(M) O(M2) O(M)

Table 4.1: Computational (Comp.) and memory (Mem.) complexities for the cost fil-
tering (CF) [91], PatchMatch (PM) [19], PatchMatch filter (PMF) [123], Deep Matching
(DM) [142, 170], and our cost-sub-volume filtering (SVF) method [80].

Equation 4.6, where pixel (x, y) ∈ Bi, and filters it to compute C ′(x, y, l′) using Equa-

tion 4.1. For each pixel (x, y) ∈ Bi, the function updates its (current best) label to l′ if

C ′(x, y, l′) < C̃(x, y, l).

4.5.2 Complexity Analysis

The complexity of our PatchMatch method is linear O(M) in space and time (see Ta-

ble 4.1). Let M be the size of the input image I, L be the size of the label space,

and R̂ = ∑K
i=1 ∣Ri∣ denote the total size of the padded superpixels. For cost aggrega-

tion, we use linear-time EAF methods, which have a runtime that is independent of

the kernel window size m = (2r + 1)2. The complexity of the extended PatchMatch

filter algorithm is O(M + R̂ log 2γs), where 2γs is the search label range of the largest

sub-volume. The O(M) term accounts for the initial optical-flow computations using

ANNF [18] and the construction of sub-volumes. Specifically, this cost is (Σn−1
i=0

M
2i
),

where n equals the number of levels used in coarse-to-fine sub-volume construction. The

last term O(R̂ log 2γs) represents the complexity of our extended PatchMatch filter. As

clarified by [123], O(R̂ log 2γs) = O(M log 2γs) because the difference between R̂ and M is

just a small leading constant. Moreover, γs is usually small γs ≪ L and does not depend

on L. This makes O(M log 2γs) = O(M), as log 2γs becomes a leading constant. This

analysis shows that the complexity of our algorithm is O(M) and does not depend on L,

compared to the original formulation of the PatchMatch filter [123] with approximately

O(M logL) complexity (see Table 4.1).

The memory complexity of our algorithm is O(2nK +M). The first term O(2nK)

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 105

Algorithm 1 PatchMatch for Sub-volume Filtering

Require: C̃(x, y, l),S,{Vs}ns=1

Ensure: Updated C̃(x, y, l)
1: /* Propagating Local Deformations */
2: for i = 0 to ∣S ∣ do
3: for all V ∈ {V s

i }ns=1 do
4: Pick a random label l′ ∈ V
5: Aggregate(C̃, i, l′)
6: end for
7: end for
8: /* Propagating motions across neighbours */
9: for i = 0 to ∣S ∣ do

10: for all Sj ∈ N (Si) do
11: Pick random(x, y) ∈ Bjwith best label l∗

12: Aggregate(C̃, i, l∗)
13: end for
14: end for
15: /* Random search */
16: for i = 0 to ∣S ∣ do
17: Pick a random (x, y) from Si with label l∗

18: Select V ∈ {V s
i }ns=1 such that l∗ ∈ V

19: For all l′ ∈ V at exponentially decreasing
distance from l∗ do

20: Aggregate(C̃, i, l∗)
21: end for
22: end for

is used to store the two sets {Ωs
µ}ns=1 and {Ωs

σ2}ns=1. The last term O(M) holds the

aggregated cost of each pixel. Because nK ≪M , O(2nK +M) = O(M).

4.6 Occlusion Handling and Gap Filling

Although the restriction of cost filtering and aggregation to sub-volumes reduce the

overall runtime, they add a small noise to the output solution. These noisy regions

are detected and result in unlabelled pixels or gaps (see Figure 4.3). The gaps also

result from incorrect labels coming from parallax effects and non-overlapped regions in

the input images. To detect gaps, we follow the left-right cross-checking approach used

by [91], where we compute two output labelling solution maps D1 and D2, constructed

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 106

by taking each image of the input pair of images as a reference image. We detect pixel

(x, y) as an incorrect label, if it has different values in the solution maps D1 and D2.

For the next discussion, we will refer to unlabelled and labelled pixels as occluded and

non-occluded pixels, respectively.

We develop a gap-filling algorithm that utilizes the previously detected superpixels. It

relies upon the following observations. (1) The desired optimal labelling solution should

be spatially smooth and maintain the intensity changes of image edges. (2) Compact

superpixels align well with image boundaries and have a high likelihood that their neigh-

bouring pixels are assigned similar labels. (3) Using superpixels as the basic units for

computations improves performance. Given a set of superpixels S = {S1, S2, S3,⋯, SK}

resulting from segmenting image I into K compact superpixels, we indicate pixels (x, y)

inside the superpixel S by (x, y) ∈ S, and (x, y) ∈ [1, Iwidth] × [1, Iheight], for Iwidth and

Iheight representing the width and height of image I.

Our gap-filling method starts by calculating for each superpixel S ∈ S, an occlusion

probability pocc(S), which is defined as:

pocc(S) =
∑(x,y)∈SOcc(x, y)

∣S∣ , (4.4)

where Occ(x, y) = 1 for occluded pixels and is zero for non-occluded pixels. We also

call a superpixel non-occluded if pocc(S) is zero or all its pixels have consistent labels.

∣S∣ indicates the number of inner pixels of S ∈ S. This divides superpixels into two sets:

occluded Socc and non-occluded Snocc, where S = Socc∪Snocc. The function h(S) is defined

to return the most frequent label D(x, y) for pixels (x, y) ∈ S, when pocc(S) < 1. Given a

user-defined threshold τfill, we set the occluded pixels (x, y) ∈ S to h(S) if pocc(S) < τfill.

After that, the occluded superpixels ∀S ∈ Socc have pocc(S) ≥ τfill. In our experiments,

we set τfill to either 0.5 or 0.6.

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 107

Occluded ACF+OH CF CLMF GroundtruthCF+OH

(a) Comparison on the Cones dataset.

Occluded ACF+OH CF CLMF GroundtruthCF+OH

(b) Comparison on the Teddy dataset.

Figure 4.5: Comparison of our accelerated cost filtering (ACF) method before and after
using our occlusion handling (OH) technique on the Teddy and Cones Middlebury stereo
datasets. We also show a visual comparison between the ACF+OH method against the
results of cost filtering (CF), cost filtering and occlusion handling (CF+OH), and cross-
based local multipoint filtering (CLMF). The left images show the resulting disparity
maps of ACH+OH. In each image, a rectangular region is highlighted, and a close-up
of this region is shown in the right columns. The occluded column shows the resulting
occluded regions of ACF before post-processing using OH. The ACH+OH column shows
the results after post-processing. The CF+OH shows the results after post-processing CF
output using OH. The next two columns show the results of CF and CLMF, respectively.
The last column shows the ground truth. Red ellipses and circles highlight areas of large
errors.

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 108

Label Propagation via Simulated Annealing

Given that compact superpixels contain pixels with similar appearance and are most likely

to share similar labels, label propagation is performed between superpixels under this

local smoothness assumption. We start by defining an adjacency graph G = (S,S×S) that

has superpixels as nodes and edges between neighbouring superpixels. Two superpixels

are neighbours if they share a common boundary. We denote the set of neighbouring non-

occluded superpixels for a given superpixel S by Nnocc(S). We also define the similarity

function sim(S,S′) = 1− ∥col(S) − col(S′)∥2 ∈ [0,1] that measures the similarity between

any two superpixels. The function col(S) returns the normalized average colour for a

superpixel S. Given a similarity threshold T , ourOur label propagation algorithm works

similarly to the simulated annealing (SA) method [68].

SA is a popular iterative metaheuristic that approximates global optimization by

finding a global minimum for a given energy function. Given a physical system at state

s, each iteration of SA considers moving the system from the state s to a candidate

neighbouring state s′. SA makes the transition according to an acceptance probability

pa(E(s),E(s′), T), where T is a parameter called the temperature, and E(s) and E(s′)

are the energies of the states s and s′, respectively. This probability equals 1 if E(s′) <

E(s) to favour downhill moves, and decreases if the difference ∥E(s) −E(s′)∥2 is high.

Also, at high T , the small differences in energy are ignored to quickly search the space

of states for a good minimum. As T is lowered, the algorithm becomes sensitive to small

changes in energy to search for the best minimum in the neighbourhood of the found

minimum.

Our algorithm starts with an initial state s that contains the two sets Socc and Snocc

representing the list of occluded and non-occluded superpixels respectively. A new state

s′ is created by filling a superpixel S ∈ Socc and creating two new sets S ′nocc = Snocc ∪ {S}

and S ′occ = Socc−{S}. In our final solution state, we need to make sure that each superpixel

S ∈ Socc is filled from its best similar neighbour. So, for superpixel S ∈ Socc, we define our

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 109

acceptance probability as,

pa(S) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if max
S′∈Nnocc(S)

sim(S,S′) > T

0 Otherwise.

, (4.5)

We define T as a similarity threshold and accept a transition for a certain superpixel

S ∈ Socc if sim(S,S′) > T and S′ is the best similar non-occluded neighbouring super-

pixel. We then fill S using h(S′). So the algorithm propagates labels from non-occluded

superpixels to their neighbouring occluded superpixels while slowly reducing T by an

amount ∆T over time. At high T , we encourage propagating labels between the most

similar neighbouring superpixels. As T is lowered, the remaining occluded superpixels

will have more filled candidates around them for selecting the best similar neighbour. We

never update the non-occluded superpixels. After filling all superpixels (see Figure 4.5),

we perform weighted-median filtering as a final refinement step, as in [91]. The pseu-

docode of our label propagation algorithm is described using the following Algorithm 2.

Algorithm 2 Label Propagation via Simulated Annealing

Require: Socc,Snocc, T,∆T
Ensure: Socc = Φ and S = Snocc

1: T = 1.0;
2: while Socc ≠ Φ do
3: Pick an S ∈ Socc
4: if Nnocc(S) = Φ then
5: continue
6: end if
7: S∗ = arg max

S
sim(S,S), where S ∈ Nnocc(S)

8: if sim(S,S∗) > T then
9: ∀(x, y) ∈ S, if Occ(x, y) then D(x, y) = h(S∗)

10: Snocc = Snocc ∪ {S}
11: Socc = Socc − {S}
12: end if
13: T = max(T −∆T,0.0)
14: end while

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 110

4.7 Applications

In this section, we apply our sub-volume-filtering framework for the two studied appli-

cations of pixel-labelling problems, stereo-vision and optical-flow estimation. In both

applications, the input is an image pair (I1, I2), and one of the images is identified as

the reference image Ir. If we set Ir = I1, then our task is to assign a label l = (u, v) that

corresponds to a displacement in the x and y direction of a pixel (x, y) ∈ I1 to a pixel

(x + u, y + v) ∈ I2.

4.7.1 Stereo Vision

In the stereo case, the label l = (u, v) defines the displacement in only the x direction

with the vertical displacement v = 0. The u displacement corresponds to the disparity d

with u = d.

Cost Computation

A matching cost is computed for a displacement vector l = (u, v) between a pixel (x, y) ∈ Ir

to a pixel (x + u, y + v) ∈ Ik. We use the truncated absolute difference of the colour

and gradient, which was employed by [91, 18, 122] and shown robustness to changes in

illumination,

C(x, y, l) = (1 − β)min (d1, γ1) + βmin (d2, γ2) , (4.6)

where d1 = ∣Ir(x, y)Ik(xk, yk)∣ and d2 = ∣∇xIr(x, y)−∇xIk(xk, yk)∣∣. In addition, β, γ1, and

γ2 are user-defined parameters, and 0 ≤ β ≤ 1. Given Ir, we displace Ik one pixel at a time

with respect to Ir and calculate a cost slice for each displacement using Equation 4.6.

This is done by considering the small disparity range and rectification of images.

Later, we filter costs using Equation 4.1 that employs the guided filter, which has a

linear-time complexity and does not depend on the kernel size. Finally, a solution map

for Ir is calculated using the winner-takes-all strategy of Equation 4.2.

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 111

Occlusion Detection and Filling

We calculate two solution maps (D1,D2) for the input image pair (I1, I2). The D2 map

is calculated by taking Ir = I2. We detect the incorrect labels caused by occlusions using

the left-right cross-checking approach [56, 91, 18, 123] and apply our gap-filling method

discussed in Section 4.6 to handle the occluded areas.

Post-processing

Our method assigns the invalid pixels in each occluded superpixel to the most frequent

label of its most similar neighbouring superpixel. This creates little artifacts in the

output disparity map. To handle these artifacts, we apply a weighted-median filter to

the output disparity map and only update the occluded pixels with their weighted labels.

For weighting, [91] showed that the weights of the bilateral filter [136] are well suited

for stereo matching. These weights are given by:

W bf
I,j =

1

Ki

exp(− ∣i − j∣2
σ2
s

) exp(− ∣Ii − Ij ∣2
σ2
c

) , (4.7)

D′(i) =∑
j

W bf
i,jD(j), (4.8)

where the kernel weights W bf
i,j ∈ R(2q+1)×(2q+1) for window ωi are centred on pixel location

i = (x, y). In addition, σ2
s and σ2

c are smoothing parameters that control the spatial and

colour similarity, respectively. Moreover, Ki is a normalization factor, and q is the kernel

radius, set to 13 in all our experiments.

4.7.2 Optical Flow

Optical flow is very similar to stereo vision with the flow vectors l = (u, v), which define

displacements in both the x and y directions.

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 112

(a) ACF+OH. Err. 7.43% (b) CF+OH 7.41% (c) CLMF+OH. Err. 7.22%

Figure 4.6: The advantage of using our OH method as a post-processing step: (a) using
OH improves the all pixel errors of accelerated cost filtering (ACF) method (r = 0.3) [79]
from 8.49% to 7.43%; (b) using OH improves the all pixel errors of cost filtering (CF) [91]
from 8.24% to 7.41%; (c) using OH improves the all pixel errors of CLMF [121] from
7.82% to 7.22%. All results are calculated on the Cones Middlebury stereo dataset with
the error threshold = 1.

Cost Computation

The matching costs are computed similar to stereo vision, adding an extra term in Equa-

tion 4.6 for matching the gradient in the y direction. Thus, we set d2 = ∣∇xIr(x, y) −

∇xIk(xk, yk)∣+ ∣∇yIr(x, y)−∇yIk(xk, yk)∣. As with stereo, the cost volume is filtered using

Equation 4.1, and an initial labelling is obtained using the winner-takes-all strategy of

Equation 4.2.

Occlusion Detection and Filling

As with stereo, we apply our gap-filling algorithm to assign labels to the occluded pix-

els detected using the left-right cross-checking approach. However, we apply the fast

weighted-median-filtering algorithm presented in [186]. This algorithm approximates the

weighted-mean-filtering algorithm described in the previous section by developing a set

of fast data structures that have O(q) complexity to find the weighted median. We also

apply a second round of forward-backward consistency check to fix any inconsistent label

assignments [18].

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 113

Subpixel Accuracy

For optical flow, subpixel accuracy is often required to enhance the resulting flow map.

We calculate subpixel-accurate optical flow by upsampling the input images. Similar to

the scheme presented by [91, 123], our method upsamples the input images by a factor of

8 using bicubic interpolation. This only increases the label space size and causes a small

runtime performance decrease since matching costs are computed at the same resolution

as the input images.

4.8 Experimental Results

4.8.1 Stereo Vision

Datasets

We perform our experiments on the four standard resolution datasets (Teddy, Cones,

Venus, and Taskuba) of the Middlebury stereo benchmark [147] and on the five (Rocks 1,

Rocks 2, Moebius, Dolls, and Books) high-resolution Middlebury 2005/2006 datasets [87].

All datasets have complex geometry, textureless regions, and parallax effects resulting

from the motion of objects. The datasets have all images rectified with radial distor-

tion removed. The standard datasets have an average of 450 × 375 pixels, whereas the

high-resolution datasets have an average of 1280 × 1110 pixels. The standard datasets

have ground-truth disparity maps with an encoded disparity range of 0.25 to 63.75 pix-

els. The high-resolution datasets have ground-truth disparity maps with a pixel-accurate

disparity range of 200 or 230 starting from 1, and 0 indicates unknown disparity. Notice

that testing on both standard and high-resolution datasets provides a more robust per-

formance comparison. While the Middlebury stereo benchmark provides images with a

small disparity range, the Middlebury 2005/2006 datasets provide a large disparity range

that highlights the speedup gains of ACF.

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 114

Results

We perform experiments using our ACF method discussed in Section 4.3.1. When we per-

form occlusion handling (OH) using our gap-filling method discussed in Section 4.6, we

refer to the method as accelerated cost filtering with occlusion handling (ACF+OH). We

compare ACF+OH on the Middlebury stereo benchmark standard datasets [147] against

cross-based local multipoint filtering (CLMF) [121], variational Mumford-Shah regular-

ization with occlusion handling (VarMSOH) [23], and cost filtering (CF) [91]. Notice that

we focus our comparison on local cost-volume filtering methods. The CF method pro-

vided a simple and efficient local filtering framework that applied edge-aware filtering on

the entire cost volume. It influenced the development of several other methods [129, 184].

CLMF process the entire cost volume by applying local multipoint filtering. VarMSOH

is also included in the comparison as a global energy minimization method that applies

variational regularization and occlusion handling.

For the high-resolution Middlebury 2005/2006 datasets [87], we compare ACF+OH

against CF [91]. For OH, VarMSOH uses a global energy minimization approach, whereas

CF and CLMF use the row filling (RF) method by [91], and we refer to them as CF+RF

and CLMF+RF.

For algorithmic parameters, ACF has an expansion factor u set to 6 for the standard

datasets, and 2 for the high-resolution datasets. We use two values for the window radius

r = 0.2 and r = 0.3. The number of superpixels K is set as in Table 4.6. For OH, ∆T

is set to 0.0001 for all datasets, and τfill is set as indicated in Table 4.6. Later in the

discussions, we will illustrate our algorithm sensitivity to the choice of parameter values.

The ACF method is implemented in C++, and all experiments were carried out on a

single-core 2.8GHz CPU. On standard size images, SIFT computation takes 0.17 seconds,

ACF filtering computation takes 14.39 seconds for r = 0.3, and post-processing using

OH takes 0.131 seconds. On average, ACF takes around 14.69 seconds on Middlebury

standard resolution images. On high-resolution images, ACF takes 0.82 seconds for SIFT

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 115

Table 4.2: Quantitative evaluation on Middlebury benchmark datasets [147]. These
results are aggregated over Cones, Teddy, Venus, and Tsukuba datasets.

Algorithm
Error threshold = 1 Error threshold = 0.5
Rank % error Rank % error

CF+OH 25 5.22 30 12.9

CLMF+OH 38 5.14 66 16.9

ACF+OH (r = 0.3) [79] 30 5.26 33 13

ACF+OH (r = 0.2) [79] 39 5.45 37 13.3

CF+RF [91] 42 5.55 27 12.8

CLMF+RF [121] 37 5.13 64 16.7

ACF+RF(r = 0.3) [79] 64 5.99 45 13.4

ACF+RF(r = 0.2) [79] 60 5.92 42 13.6

VarMSOH [23] 116 8.17 21 11.8

computation, 156.82 seconds for cost filtering, and 0.2 seconds for OH. On average, ACF

takes around 157.84 seconds on Middlebury high-resolution images.

Table 4.3: Stereo evaluation results on Middlebury benchmark with error threshold equal
to 1.0.

Algorithm
Tsukuba Venus Teddy Cones
nocc all disk nocc all disk nocc all disc nocc all disk

CF+OH 1.45 1.75 7.37 0.19 0.37 2.24 5.85 10 16.1 2.6 7.41 7.31

CLMF+OH 2.39 2.69 6.53 0.26 0.37 2.23 5.49 10.7 14.2 2.46 7.22 7.10

ACF+OH (r = 0.3) [79] 1.45 1.75 7.37 0.19 0.37 2.24 5.94 10.1 16.4 2.61 7.43 7.23

ACF+OH (r = 0.2) [79] 1.45 1.75 7.37 0.19 0.37 2.24 6.64 10.7 16.3 2.82 7.79 7.74

CF+RF [91] 1.51 1.85 7.61 0.2 0.39 2.42 6.16 11.8 16 2.71 8.24 7.66

CLMF+RF [121] 2.46 2.78 6.26 0.27 0.38 2.15 5.50 10.6 14.2 2.34 7.82 6.80

ACF+RF (r = 0.3) [79] 1.51 1.85 7.61 0.2 0.39 2.42 6.94 11.3 18.5 3.38 8.49 9.3

ACF+RF (r = 0.2) [79] 1.51 1.85 7.61 0.2 0.39 2.42 6.96 11.1 17.1 3.66 9.06 9.8

VarMSOH [23] 3.97 5.23 14.9 0.28 0.76 3.78 9.34 14.3 20 4.14 9.91 11.4

Filtering Time

Table 4.5 provides a comparison of the average filtering time and the average percentage

of the occluded pixels between ACF and CF, on both the standard and high-resolution

Middlebury datasets. Notice that we do not apply the post-processing steps. We can see

that ACF and CF have a comparable accuracy; however, ACF has a significantly faster

filtering time. The average filtering time on standard datasets is 18.717 and 28.2 seconds

for ACF(r=0.3) and CF, respectively; whereas for high-resolution datasets, these numbers

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 116

are 159.82 and 505 seconds, respectively. Moreover, the average percentage of occluded

pixels is comparable on both standard and high-resolution datasets. The table also

shows that the runtime of the row-filling and the occlusion handling (OH) post-processing

algorithms are 0.11 and 0.131 seconds, respectively, on standard datasets; whereas, for

the high-resolution dataset, these numbers are 1.4 and 0.2 seconds, respectively. This

indicates that the OH method has significantly faster runtime than the traditional row-

filling (RF) method on high-resolution images. This is expected because OH depends on

the number of superpixels, which is much smaller than the number of image pixels.

Visual comparisons. Figure 4.7 shows a visual comparison between our accelerated

cost filtering with occlusion handling (ACF+OH) method and cross-based local multipoint

filtering with row filling (CLMF+RF) [121], cost filtering with row filling (CF+RF) [91],

and variational Mumford-Shah regularization with occlusion handling (VarMSOH) [23],

on all Middlebury standard resolution datasets. Our OH method consistently fills occluded

areas, whereas the traditional RF method causes large distortions. Figure 4.8 shows

similar results on the Moebius, Rocks 2, and Books high-resolution datasets.

Numerical ComparisonsMiddlebury Standard Benchmark

Figure 4.7 shows a visual comparison between our accelerated cost filtering with occlu-

sion handling (ACF+OH) method [79] and cross-based local multipoint filtering with row

filling (CLMF+RF) [121], cost filtering with row filling (CF+RF) [91], and variational

Mumford-Shah regularization with occlusion handling (VarMSOH) [23], on all Middle-

bury standard resolution datasets. Our OH method consistently fills occluded areas,

whereas the traditional RF method causes large distortions.

Table 4.2 shows an accuracy comparison on the Middlebury standard benchmark.

The comparison lists the quantitative evaluation results and shows the rank and average

percentage of bad pixels (errors) for all compared methods. We list results for two error

thresholds: 1, which is the default threshold, and 0.5. The results show that our method

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 117

(p) Ground Truth (q) ACF+OH (r) CLMF+RF (s) CF+RF (t) VarMSOH

Figure 4.7: Visually comparing the output disparity maps between accelerated cost fil-
tering with occlusion handling (ACF+OH) [79] and cross-based local multipoint filtering
with row filling (CLMF+RF) [121], cost filtering with row filling (CF+RF) [91], and
variational Mumford-Shah regularization with occlusion handling (VarMSOH) [23], on
the Teddy, Cones, and Venus Venus, and Tsukuba datasets of the Middlebury stereo
benchmark [147].

has a higher rank over VarMSOH, CF+RF, and CLMF+RF on the error threshold 1.

However, CF+RF and VarMSOH have a slightly better performance on the 0.5 threshold.

This is because our ACF method does not support subpixel accuracy through slanted

planes that give a larger precision by assuming a continuous range of disparities. This

requires us to deal with a continuous range of labels, which ACF cannot handle in a

feasible time, as it filters sub-volumes one slice at a time. Our segmentation-based sub-

volume method overcomes this problem, as we will see later in the experiments presented

in Section 4.8.2.

Table 4.2 also presents results for our OH method. We notice that ACF+RF, which

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 118

(a) Ground Truth (b) ACF+OH (c) CLMF+RF

Figure 4.8: Visually comparing the output disparity maps between accelerated cost
filtering with occlusion handling (ACF+OH) [79] and cost filtering with row filling
(CF+RF) [91], on the Books, Moebius, and Rocks 2Dolls, Rocks 1, and Rocks 2 high-
resolution Middlebury 2005/2006 datasets [87].

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 119

fills the gaps of ACF using the RF method, has a lower rank of 60 and 64 at the default

threshold for r = 0.2 and r = 0.3, whereas, ACF+OH has a better rank of 30 and 39,

respectively. Even using our OH method with the cost filter (CF+OH) improves the rank

to 25 over CF+RF [91], which has the rank 42 (Figure 4.6). We can also see a similar

accuracy for CLMF+OH and CLMF+RF.

Table 4.3 presents the benchmark results on the four Middlebury standard datasets

under the default error threshold. The table lists three values for each dataset repre-

senting the following errors: (1) nocc error, which measures the average percentage of

incorrect disparities on all non-occluded pixels, (2) all error, which defines the same error

as nocc but on all image pixels, and (3) disc error, which provides the same error but

on pixels near depth discontinuities. We can see that ACF+OH with r = 0.3 and r = 0.2

outperformed CF+RF and CLMF+RF on the all error and nearly on every value of the

nocc and disc errors. Our method also outperforms VarMSOH on all errors. For OH,

our approach boosts the accuracy of ACF over that of the RF method. For example,

The Teddy dataset has an all error of 10.1% and 10.7% for ACF+OH (r = 0.3) and

ACF+OH (r = 0.2), compared to 11.3% and 11.1% for ACF+RF, respectively. More-

over, OH boosts accuracy when it is used as a post-processing step for CF and CLMF.

For CF, OH reduces every error measure, whereas, for CLMF, OH reduces nocc and all

errors.

Table 4.4: Performance comparison between accelerated cost filtering with occlusion
handling (ACF+OH) and cost filtering with row filling (CF+RF) on the Middlebury
2005/2006 high-resolution datasets. The reported runtime is for cost-volume filtering.

Dataset
ACF+OH CF+RF

time (sec) % error time (sec) % error
Rocks2 126.21 5.4 471.4 6.95
Books 152.22 16.1 569.22 16.4
Dolls 188.41 14.2 529.84 13.2
Moebius 152.3 10.94 526.38 12.78
Rocks1 180.88 6.2 435.35 6.31

Average 160 10.57 506.44 11.13

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 120

Table 4.5: Comparison of the average filtering time and the average percentage of oc-
cluded pixels between accelerated cost filtering (ACF) [79] and cost filtering (CF) [91]
without any post-processing steps on Middlebury standard and high-resolution datasets.
Runtimes for row filling (RF) and occlusion handling (OH) post-processing steps are also
provided.

Algorithm
Average % occluded pixels Runtime (seconds)
Standard High Resolution Standard High Resolution

ACF(r=0.2) 14.2 - 16.117 -

ACF(r=0.3) 14.39 26.1 18.717 159.82

CF 13.6 26.9 28.2 505

RF - - 0.11 1.4

OH - - 0.131 0.2

Middlebury 2005/2006 Datasets

Figure 4.8 shows a visual comparison between ACF+OH and CF+RF, on the Moebius,

Dolls, Rocks1, Rocks 2, and Books high-resolution datasets. ACF+OH provides better

results than CF+RF. For example, the first row from top shows results of the Books

dataset. CF+RF has very high distortions compared to ACF+OH. The OH method also

performs a better job than RF in handling occluded areas. The third row from the top

shows the results of the Dolls dataset. It is clear that most of the fine details in the Dolls

dataset are preserved in the ACF+OH result, whereas several details are lost in CF+RF

result. Similar results are obtained for other datasets.

Table 4.4 shows the results for the Middlebury 2005/2006 high-resolution datasets.

The accelerated cost filtering with occlusion handling (ACF+OH) method has an average

error of 10.57% over all datasets, whereas cost filtering with row filling (CF+RF) achieves

11.13%. We can also see that our ACF+OH method achieves up to 4 times the speed

increase over CF+RF. These results confirm our main contribution that we can restrict

filtering within the cost volume to a small set of sub-volumes, while achieving similar (or

even better, in some cases) accuracy to filtering the entire cost volume.

In Table 4.5, we provide a comparison between ACF and CF on both the standard and

high-resolution Middlebury datasets. Notice that we do not apply the post-processing

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 121

Figure 4.9: Accuracy of cost filtering with row filling (CF+RF) and cost filtering with
occlusion handling (CF+OH) against τfill threshold for the OH method. The dashed red
line indicates the accuracy of CF+RF. It is independent of the choice of τfill. Solid lines
indicate the percentage of all (left column) and nocc (right column) errors for different
values of the number of superpixels K. The top row shows plots for the Cones dataset,
and the bottom row shows plots for the Teddy dataset. This figure is best viewed in
colour.

steps. We can see that ACF and CF have a comparable accuracy; however, ACF

has a significantly faster runtime. The table also shows that the occlusion handling

(OH) approach outperforms the runtime of the traditional row-filling (RF) method on

higher-image resolutions.

Table 4.6: Parameters for occlusion handling (OH) procedure. ∆T = 0.0001.

Dataset #superpixels τfill Dataset #superpixels τfill Dataset #superpixels τfill

Cones 1600 0.6 Teddy 2000 0.6 Tsukuba 500 0.5

Venus 1000 0.5 Rocks1 700 0.5 Rocks2 700 0.5

Moebius 1600 0.5 Dolls 1600 0.5 Books 1600 0.5

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 122

Figure 4.10: Runtime versus accuracy comparison for accelerated cost filtering with
occlusion handling (ACF+OH) using different values for the r parameter that controls
the size of local window used for defining salient regions. The numbers printed next to
the plots represent average percentage errors. This figure is best viewed in colour.

Sensitivity Analysis

To study how the algorithmic parameters affect the runtime and accuracy of our ACF+OH

method, we performed several sensitivity analysis experiments. Our first experiment is

shown in Figure 4.10 and presents a runtime versus accuracy comparison time-accuracy

trade-off evaluation for ACF+OH while changing the parameter r that defines the local

window radius used for constructing salient areas. Note that the local window radius

is defined as r × Iwidth. The x-axis in Figure 4.10 is the local window size defined by r,

while the y-axis is the runtime in seconds. Notice that the accuracy increases for large

r values, which widens the salient regions. This is expected, as we process more area

of the cost volume; however, the accuracy has an unnoticeable variation after r = 0.3.

This important observation confirms our main contribution that we can restrict filtering

to a small set of sub-volumes inside the cost volume while obtaining similar accuracy to

filtering the entire volume.

For OH, Figure 4.9 shows plots for the all and nocc errors of the CF+RF and CF+OH

methods against a range of values for the τfill parameter. Each plot also shows several

error graphs corresponding to different values of the number of superpixels K. The top

row shows the accuracy results for the Cones dataset and the bottom row shows the same

results for the Teddy dataset. The plots show that the OH method improves accuracy

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 123

over a range of values for τfill and K. This highlights the robustness of our OH method

against the selection of parameters.

4.8.2 Optical Flow

Datasets

We evaluate our SVF method on three standard optical-flow benchmarks: (1) MPI Sintel

benchmark [40]; (2) Middlebury benchmark [17], and 3) KITTI benchmark [65]. We

also evaluate the runtime performance of the proposed method on a 2880 × 1620 high-

resolution image [167] (we assume zero motion and focus only on processing times).

Results

We will show that ACF+OH becomes infeasible for processing very large label spaces,

typically found in optical flow. Therefore, we performed optical-flow experiments using

our SVF method. When we perform occlusion handling (OH) using our gap-filling method

discussed in Section 4.6, we refer to the method as cost-sub-volume filtering with occlusion

handling (SVF+OH).

We employ the guided filter proposed in [74, 122] for EAF. The parameter settings

for the guided filter are taken from [74, 122], as follows: σr = 0.1, β = 0.9, γ1 = 0.039,

γ2 = 0.016, and ε = 0.0001. The kernel radius q is set to 5. The sub-volume selection

parameters that control sparsity are βs = 1.9 and γs = 2. We fix the number of superpixels

K equal to 1,500, and the number of PatchMatch iterations is set to 7. These parameter

values are fixed for all our evaluations.

The SVF method is implemented in C++ using compute unified device architecture

(CUDA), and all experiments were carried out using a NVIDIA GeForce GTX 780 GPU.

On standard size images, ANNF computation takes around 0.32 seconds, the preprocess-

ing step takes about 0.4 seconds, and the sub-volume PatchMatch filtering takes 0.84

seconds. On average, the SVF takes around 1.56 seconds to process standard resolution

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 124

images from the Middlebury benchmark. The SVF method also scales well to medium-

resolution images, taking on average 1.95 and 2 seconds to compute optical flow from the

MPI Sintel and KITTI benchmarks, respectively. A single PatchMatch filtering iteration

takes about 0.14 seconds on medium-resolution images.

Figure 4.11: MPI Sintel market 1 sequence: (top row) clean pass and (bottom row) final
pass. First column shows a pair of images from the sequence. The second column shows
initial optical flow computed by [18]. The last column shows optical flow computed
using our method. Our method improves the quality of optical flow computed by [18].
End-point error (EPE) all values are shown on the images.

Filtering Time

Table 4.7 compares the filtering times (using both CPU and GPU) of our SVF method

against PatchMatch filter (PMF), CF, and ACF schemes. These runtimes include both

cost-volume computation and aggregation. Notice that PMF randomly filters the en-

tire cost volume, while CF performs an exhaustive search. The table also provides a

comparison of the total runtime of our method against optical flow based on principal

component analysis and layered formulation (PCA-Layers) [173], edge-preserving Patch-

Match (EPPM) [18], and optical flow with nearest neighbour field (NNF-Local) [50]. We

perform all comparisons on the same machine except for NNF-Local, which we report

from the benchmarks due to the current unavailability of the code.

The filtering time comparison is performed on three different images sizes: a) 640 ×

480 (Middlebury dataset), b) 1024 × 436 (MPI Sintel dataset), and c) 2880 × 1620 [167].

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 125

Algorithm
Middlebury-Standard(640x480) Sintel-Medium(1024x463) Cat-High(2880x1620)

CPU GPU Multi-GPUs CPU GPU Multi-GPUs CPU GPU Multi-GPUs
SVF [80] 9.38 0.84 0.38 10.6 0.98 0.45 98.4 5.53 2.4
PMF [122] 35 3.4 1.38 44 4.2 1.7 437.5 29 11.23
CF [91] 59526.9 750 251 - - - - - -
ACF [79] 35015.8 410.4 137.8 - - - - - -

SVF [80] 11 1.56 0.4 14 1.98 0.5 110 9.53 3.2
EPPM [18] - 0.17 - - 0.22 - - 0.32 -
PCA-Layers [173] 10.1 - - 15.2 - - - - -
NNF-Local [50] 1073 - - - - - - - -

Table 4.7: (Top four rows) Comparing filtering times for our cost-sub-volume filtering
(SVF) method [80] against that of PatchMatch filter (PMF) [122], cost filtering (CF) [91],
and accelerated cost filtering (ACF) [79] schemes. We report these times on a single
CPU at 2.8 GHz, a single GPU, and multiple GPUs. Our algorithm and PMF are
pipelined on three GPUs; CF and ACF are parallelized on the three GPUs. (Bottom
four rows) Comparing the total runtime of SVF against edge-preserving PatchMatch
(EPPM) [18], optical flow based on principal component analysis and layered formulation
(PCA-Layers) [173], and optical flow with nearest neighbour field (NNF-Local) [50], all
runtimes are computed on the same machine except for NNF-Local that we report from
the benchmarks. Our algorithm scales linearly with image resolution and does not depend
upon the label space size. The PMF depends on the label space size with O(M logL)
complexity.

For PMF, CF, and ACF schemes, the label space size is 410,000 for 640 × 480 (see

PMF [122]). The label space sizes are 1,600,000 and 102,000 for 1024 × 436 and 2880

× 1620 images, respectively. Subpixel-accuracy computation is turned off for 2880 ×

1620 images because of memory constraints. Notice that [122] has O(M logL) time

complexity, whereas our method has O(M) time complexity. Here, M represents the

number of pixels (i.e., image resolution), and L is the size of the label space. Both

CF and ACF post large runtimes, which renders these methods infeasible for higher-

resolution images. Even ACF, which introduced sub-volume filtering, can achieve only a

four-fold speed increase over CF.

Multi-GPUs Implementation

The filtering time comparison is also reported on a multi-GPU setup consisting of three

GPUs. For this setup, we perform loop unrolling for parallelizing the filtering iterations

of our method and PMF. In addition, CF and ACF are parallelized on the three GPUs.

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 126

Table 4.7 shows a clear performance improvement of our method on this multi-GPU

setup. For example, the total runtime of our method reduces to 0.5 seconds on the Sintel

dataset, while using an extra GPU for preprocessing.

MPI Sintel Benchmark

The MPI Sintel benchmark contains two rendering passes: (1) a clean pass and (2) final

pass (Figure 4.11). The clean pass exhibits large motions and illumination, reflectance,

and shading effects, whereas the final pass adds colour correction, defocus, motion blur,

and atmospheric effects to the images from the clean pass. The dataset contains 12

sequences for each pass and 564 images.

Figure 4.12 summarizes the MPI Sintel benchmark results of our SVF+OH method

against other schemes (with runtimes no greater than 40 seconds per frame). The figure

shows average end-point error (EPE) versus runtime on the entire image (all), on regions

with displacements of more than 40 pixels (s40+), and on regions with displacements of

less than 10 pixels (s0-10). Our method achieves accuracy that is comparable to those

obtained by PMF [122] and optical flow with deep matching (DeepFlow) [170], which are

two state-of-the-art methods. However, our method posts significantly faster runtimes.

For example, our method is nearly 3 times faster than PMF and 10 times faster than

DeepFlow. Table 4.7 shows that our method achieves around a five-fold speed increase

over PMF for higher-resolution images. The method in DeepFlow has trouble dealing

with higher-resolution images due to its large memory requirements (see [142]). See

Table 4.1 for a comparison of space/time complexity of our method versus PMF and

DeepFlow.

Figure 4.12 also shows that the SVF+OH outperforms several other recent methods,

such as PCA-Layers [173] and optical flow with sparse matching (SparseFlow) [161], on

both accuracy and speed. For instance, when compared against our method on the same

machine using the authors provided code, the PCA-Layers method provides comparable

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 127

CPU runtime to our method, as seen in Table 4.7. Moreover, PCA-Layers requires an

offline training stage. Furthermore, our method outperforms the method by [18] on nearly

all error measures (see results on clean passes). For instance, our method improves the

EPE values of [18], which we use to compute the initial optical flow (see also Figure 4.11).

On the clean pass, for example, the all and s40+ EPE values returned from [18] are 6.494

and 39.152, respectively, whereas the EPE values achieved by our method are 5.450 and

35.933, respectively. On the final pass, these values are 8.377 and 49.083 for [18] and are

7.737 and 46.420 for our method, respectively. As expected, however, [18] posted faster

runtimes (see Table 4.7).

The optical flow with convolutional networks and variational refinement (FlowNetS+ft+v) [60]

is the only method that imposes a faster runtime over our single GPU implementation

on the MPI final pass. Our method, however, outperforms it on accuracy by a large mar-

gin on the clean pass. Our method also gives better results on the Middlebury datasets

(see Figure 4.12) than those of FlowNetS+ft+v. The runtime of FlowNetS+ft+v is 1.12

seconds compared to 1.95 seconds for our method. The FlowNetS+ft+v method requires

a large set of training images with ground truth, which is difficult to obtain in practice,

as indicated by [60]. Perhaps its inability to generalize is why FlowNetS+ft+v performs

poorly on the Middlebury dataset.

The optical flow with coarse-to-fine PatchMatch (CPM-Flow) method [92] outper-

forms our method on accuracy, while having a slower runtime. This is because it relies

on the edge-preserving interpolation of correspondences for optical flow (EpicFlow) tech-

nique, which involves both variational energy minimization and dense interpolation and

takes around 3 seconds for post-processing results. Our method is much simpler and can

be further accelerated on multi-GPUs (see Table 4.7).

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 128

Middlebury Benchmark

Figure 4.13 shows the Middlebury quantitative benchmark results and compares our

method against several other techniques. The Middlebury benchmark contains images

exhibiting small displacements. Some image pairs, such as Basketball and Backyard do

show large displacements. Figure 4.13 (top left) shows the average EPE rank values

versus runtime for all image regions. Figure 4.13 (top right) shows the average angle

error rank versus runtime for all image regions. Our method outperforms every other

method in terms of runtime performance, while achieving comparable (in some cases, only

marginally worse) accuracy (see Figure 4.14). Our method outperforms several methods,

including EPPM [18], CF [91], EpicFlow [143], dense correspondence fields for optical

flow (FlowFields) [15], and DeepFlow [170]. Our method also achieves around 3 times the

speed increase over PMF, while demonstrating better accuracy on the angle error rank

and a comparable accuracy on the EPE rank. This suggests that our method is able

to achieve good performance on both MPI Sintel and Middlebury benchmarks. These

evaluations also strengthen the key contribution of our work: a fast method for computing

optical flow that can achieve good accuracy on both small- and large-displacement optical-

flow estimation problems.

KITTI Benchmark

The KITTI benchmark [65] was obtained by a moving vehicle capturing images of streets

with city traffic. Thus, the recorded flow is due to camera motion, which results in

scaling and rotation of objects with large smooth areas and few motion boundaries. In

addition, the camera creates large distortions along image boundaries. This limits our

local SVF method from finding accurate sub-volumes. We share this limitation with

other local methods [18, 91, 122]. We think that methods employing global energy

minimization [143] will perform better than our local method on KITTI. Figure 4.13

(bottom) shows the average EPE versus runtime of our method against other state-of-

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 129

the-art methods. It is worth noting that we have a similar accuracy to FlowNetS+ft [60]

on KITTI.

Time-accuracy Trade-offSensitivity Analysis

Figure 4.15 shows a sensitivity analysis of the SVF+OH method on the Middlebury

optical flow training datasets. Figure 4.15 (top left) shows a comparison of the average

EPE versus the sub-volume expansion upper-bound parameter γs and for different values

of the expansion factor βs. It is clear that the error increases when γs < 2 or γs > 5. A low

γs value results in small sub-volumes that discard several good motion candidates around

their mean motion. A large γs value, on the other hand, results in large sub-volumes

that have large noise. A similar result can be seen when varying the βs. The lowest

average EPE values are for βs = 1.96 and the error increase as βs < 1.96 or βs > 1.96.

Figure 4.15 (top left) shows the same comparison as the (top right) figure and results

confirm our observations. Figure 4.15 (middle left) shows a comparison of the average

filtering time versus the average EPE for different values of the number of superpixels K.

Figure 4.15 (middle right) shows a similar comparison for average AE. The filtering times

are reported on a single GPU. We can observe that larger values of K provide better

accuracy, however at the cost of increased computational costs. Figure 4.15 (bottom row)

presents the filtering time versus γs for different values of K. We can see that the filtering

time increases exponentially with γs. The reason is that the computational time of the

random search step of PatchMatch grows exponentially. Each PatchMatch iteration

of SVF+OH searches for each sub-volume, a sequence of motions at an exponentially

decreasing distance from its mean motion. For additional results on the Middlebury

training datasets, please see Appendix A.

Figure 4.16 (top row) shows a time-accuracy trade-off evaluation of SVF for different

values of K, where K is the number of superpixels. The EPE values are averaged over the

entire MPI Sintel testing datasets, and the filtering times are reported on a single GPU.

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 130

We observe that our method is robust to the choice of K. Furthermore, larger values of K

yield better optical-flow estimation results. This, however, comes at the cost of increased

processing costs. We found that setting K to 1500 gives a reasonable trade-off between

accuracy and time. Similar results have been obtained on Figure 4.15 (middle row) for

the Middlebury training datasets.Similar results have been obtained on the Middlebury

training datasets and are available in the supplementary material A.Notice that K, βs,

and γs control the sub-volume size; however, we show by experiments that the chosen

values of βs and γs allow our method to achieve similar accuracy to PMF that randomly

filters the entire cost volume. Increasing γs will not carry much benefit. Reducing γs,

however, reduces accuracy, as we will favour the mean motion of each superpixel.

The middle and bottom rows of Figure 4.16 show the convergence of our method

on two datasets, Wall and Ambush 3, on both the clean and final passes. Note that

our method typically achieves convergence after seven iterations. The PMF [122], on

the other hand, requires 10 iterations for convergence. A closer look at the figures

shows that our method outperforms all compared methods on the Wall dataset. This

is true for most datasets; however, our method fails on the Ambush 1 and Ambush 3

datasets, as they have large textureless regions. We share this limitation with other local

methods [122, 18, 91].

Limitations

4.9 Limitations

Limitations. Given that the ACF and SVF methods is are local, we share the same

limitations of other local methods [122, 18, 91]. The ACF and SVF fails on textureless

regions with few motion boundaries. Our sub-volume formulation also has the problem

of using a translational motion model. This creates problems on more complex motions

consisting of rotations and scaling. This limitation is also shared with [122, 18, 91].

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 131

One future direction to handle this problem is to extend our formulation to use the

homography and similarity transformations proposed by [50] and [99].

4.10 Concurrent Streaming Implementation

Streaming pipeline. Figures 4.12 and 4.13 present runtimes for our method on a single

GPU for a fair comparison against other methods. Our method can also be implemented

as a pipeline running on multiple GPUs in a concurrent streaming fashion. Table 4.7

compares the filtering times of the SVF against PMF [122] using one CPU, one GPU, and

three GPUs. We apply loop unrolling for pipelining on three GPUs (i.e., the iterations

needed for convergence are divided among GPUs). Figure 4.16 shows that the proposed

method converges after seven iterations, and the iterations are assigned to GPUs as

follows: iterations one through two for GPU 1; iterations three through four for GPU

2; and iterations five through seven for GPU 3. The PMF method, on the other hand,

converges after 10 iterations, and the iterations are assigned to the three GPUs as follows:

iterations one through three for GPU 1; iterations four through six for GPU 2; and

iterations seven through ten for GPU 3. For standard resolution images, the pipelined

implementation of our method takes about 0.88 seconds to filter the first pair of images

and only 0.38 seconds for subsequent frames. The overhead due to data transfer between

multiple GPUs is minimal. For medium-resolution images, our method takes 0.45 seconds

for filtering, after 1.06 seconds for the first image pair. Similarly, for higher-resolution

images, the filtering times for our method drops to 2.4 seconds (from 5.53 seconds for

single GPU implementation). A similar trend is seen for PMF. Using three GPUs also

improves the performance of CF and ACF; however, given the performance of CF and

ACF on low-resolution images, it was infeasible to use CF and ACF for medium and

high-resolution images. Notice that, on the MPI Sintel benchmark, the total runtime

of our method on a five GPU pipelines using two more GPUs for preprocessing is 0.5

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 132

seconds, whereas PMF runtime using five GPUs is 1.75 seconds.

This pipelining implementation is important for video processing. For example, on

standard size images, it takes about 1.4 seconds for filtering the first pair of frames, and

0.14 seconds for subsequent frames. Note that we pay a small overhead for data transfer.

This improvement scales to 0.16 and 0.83 seconds for medium and high resolutions.

These numbers for PMF pipelining are 0.36, 0.44, and 2.95 for standard, medium, and

high resolutions, respectively. Notice that PMF still has its computation logarithmically

scaled by the label space size. When pipelining all steps of our method, we reduce the

running time on the MPI Sintel from 2.5 seconds to 0.3 seconds after the first frame.

For a video of standard resolution size, we reduce the running time from 1.8 seconds to

0.25 seconds. Similar improvements can be obtained for higher resolutions. The CF and

ACF methods post the slowest runtimes (using 1 GPU). Given the performance of CF

and ACF on low-resolution images, it was infeasible to use CF and ACF for medium and

high-resolution images.

Algebraic description. We describe the pipeline implementation of SVF using our

developed stream algebra [76, 77, 78]. We start by defining the following data types:

Frame ∶ 2DImage;FramePair ∶ Frame × Frame;

FramePyramid ∶ List ⟨Frame⟩ ;FramePyramidPair ∶ FramePyramid × FramePyramid;

Flow ∶ List ⟨Frame⟩ ;FlowPyramid ∶ List ⟨Flow⟩

FlowPyramidPair ∶ FlowPyramid × FlowPyramid;

Superpixels ∶ Frame;Subvolume ∶ R4;SubvolumesScale ∶ List ⟨Subvolume⟩ ;

SubvolumesPyramid ∶ List ⟨SubvolumesScale⟩ ;

Cost ∶ Frame;GPUInfo ∶ R2;

FlowVector ∶ FramePyramidPair × FlowPyramidPair

SuperpixelsVector ∶ FramePyramidPair × FlowPyramidPair × Superpixels

SubvolumesVector ∶ FramePyramidPair×SubvolumesPyramid×Superpixels×Cost×

Flow

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 133

where a Frame is a single 2D image, a FramePair is the input image pair for optical

flow or stereo vision. The FramePyramid is a multiscale pyramid of a given frame and

FramePyramidPair is a pair of frame pyramids. The Flow is a pair of frames, one

representing displacements in x direction and the other representing displacements in y

direction. In addition, FlowPyramid is a pyramid that has an optical flow defined at

each scale. A FlowPyramidPair is a pair of flow pyramids, one for each input image.

The Superpixels type is a frame that has the value of each pixel defining its superpixel

index. A Subvolume is a 4D vector (µx, µy, σx, σy) defined for each superpixel, specifying

the mean and variance of its dominant motion. A SubvolumesScale is a list of sub-

volumes for all superpixels in a given image at a specific scale. The SubvolumesPyramid

is a pyramid that has each scale containing the list of sub-volumes for the superpixels

at the corresponding scale in a FramePyramid. The Cost is a frame defining the cost of

optical-flow label assignments and GPUInfo is a 2D vector (n, id) defining the number

of PatchMatch iterations n and the identifier id of the target GPU in a multi-GPU

pipeline. The FlowVector, SuperpixelsVector, and SubvolumesVector are vectors

composed from the previously defined data types.

Given the datatypes, we assume an incoming stream of frame pairs I ∶ S ⟨FramePair⟩.

Each pair p ∈ I defines an input image pair. We start by defining the function f1 ∶

FramePair → FramePyramidPair that maps each input image into an image pyramid

of three scales. This function can be used with the Map operator to define the stream

P ∶ S ⟨FramePyramidPair⟩:

P ≜Map(f1)(I). (4.9)

Given the P stream, we define the function f2 ∶ FramePyramidPair → FlowVector that

applies the method of [122] to generate the initial optical flow for each scale in the input

image pyramids. The output is a pair of pyramids, one for forward flow and the other for

backward flow. The function f2 can be used with the Map operator to define the output

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 134

stream F ∶ S ⟨FlowVector⟩:

F ≜Map(f2)(P). (4.10)

Later, we can apply the function f3 ∶ FlowVector → SuperpixelsVector that generates

the superpixel image using the SLIC algorithm [1] for the original scale of the refer-

ence image (scale zero in the image pyramid of the first input image). Note that we

only need to calculate the superpixels for the reference image where optical flow will be

calculated. The function f3 can be used with the Map operator to define the stream

S ∶ S ⟨SuperpixelsVector⟩:

S ≜Map(f3)(F). (4.11)

Next, we calculate the list of sub-volumes for each scale in the reference image pyra-

mid to produce a sub-volume pyramid using the function f4 ∶ SuperpixelsVector →

SubvolumesVector. The stream V ∶ S ⟨SubvolumesVector⟩ is then defined using the

following Map operator:

V ≜Map(f4)(S). (4.12)

Now, that we defined the list of sub-volumes for the reference image, we start applying

the PatchMatch iterations. We define the function g ∶ SubvolumesVector × GPUInfo →

SubvolumesVector × GPUInfo, which executes the PatchMatch iterations and takes as

input the vector (s, u). The sub-volume vector s ∈ V comes from the stream V . In

addition, q is a 2D vector (q.n, q.id) defining the number of PatchMatch iterations q.n

and the identifier q.id of the target GPU device. Given the three GPU pipeline sce-

narios discussed in the previous section, we define three status variables u1, u2, and u3

of type GPUInfo and assign them the vectors (2,GPU1), (2,GPU2), and (3,GPU3),

respectively. Then, we use the following three Reduce operators to create the multi-GPU

pipeline and produce the stream V ′ ∶ S ⟨SubvolumesVector⟩:

V ′ ≜ Reduce(g, u1) ○Reduce(g, u2) ○Reduce(g, u3)(V), (4.13)

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 135

where ○ is the composition operator. Note that V ′ contains the initial output flow

computed using our SVF method. The final Map operator can be later defined for post-

processing the initially computed flow.

Throughput versus latency analysis. In order to show the benefits of the al-

gebraic description of the SVF pipeline, we study its throughput and latency (See Sec-

tion 3.3 for the definition of throughput and latency). Throughput is the inverse of the

period which is the slowest operator computation or communication time in the pipeline.

In our study, we report the period. Figure 4.17a shows the described pipeline for SVF.

For standard resolution images, the latency of the Reduce operators to filter each pair

of images is 0.88 seconds and the period is 0.38 seconds; whereas for medium-resolution,

these numbers are 1.06 0.45 seconds, respectively. Similarly, for higher-resolution images,

the latency is 5.9 seconds and the period is 2.4 seconds. These performance numbers in-

dicate that it takes about 0.88 seconds to filter the first pair of images, and then 0.38

seconds for subsequent frames, on standard resolution images. The overhead due to data

transfer between multiple GPUs is minimal and is around 0.07 seconds. Notice that

the filtering time of our method is 5.53 seconds for single GPU implementation. Using

three GPUs also improves the performance of PMF, CF, and ACF; however, given the

performance of CF and ACF on low-resolution images, it was infeasible to use CF and

ACF for medium and high-resolution images.

We also study the total latency and throughput of the pipeline on medium resolution

images. The computational time of the functions executed by the four Map operators

in Figure 4.17a are as follows, 0.11, 0.6, 0.35, and 0.1 seconds, in the same left to right

order. For the three Reduce operators, their computational times are 0.31, 0.31, and

0.45 seconds. We ignore the communication time between these operators as in our

setup they are running on the same machine. So, the total latency of the pipeline is

around 2.2 seconds. Notice that the period now is 0.6 seconds as the slowest operation

is the calculation of initial optical flow.

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 136

Figure 4.17b shows a similar pipeline to Figure 4.17a; however, we use two extra GPUs

to execute two replicas in parallel for the Map operator that computes the initial optical

flow. Scatter and Merge are used to distribute elements of the P stream in a round-robin

fashion to a ListMap operator that executes the two replicas. The ListMap processes two

inputs in parallel, so the resulting period of the Scatter, ListMap, and Merge operators

is approximately 0.3 seconds or half the period of a single Map operator. On medium-

resolution images, the period of our method on a five GPU pipeline is 0.45 seconds (≈ 0.5),

which provides better throughput. It is worth mentioning that the period of PMF using

five GPUs is 1.75 seconds. So, our study shows that with more GPUs, we can scale up the

pipeline to achieve better throughput. This is achieved by using our algebraic operators

to construct parallel processing patterns with minimal programming efforts. We think

that our stream algebra will be helpful in fast prototyping of large-scale computer vision

systems.

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 137

Figure 4.12: Accuracy versus runtime evaluation (summarization) recorded on 24 Jan-
uary 2017 on the MPI Sintel benchmark. We focus on the top-ranked techniques with
runtime ≤ 40 seconds. Detailed MPI Sintel results are available online [133] and in the
supplementary materialAppendix A.

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 138

Figure 4.13: Accuracy versus runtime evaluation (summarization) recorded on 24 Jan-
uary 2017 on the Middlebury and KITTI benchmarks. We focus on the top-ranked tech-
niques with runtime ≤ 40 seconds. The EPPM is computed by [18] without hierarchical
matching (HM). Detailed results are available online [133] and in the supplementary
materialAppendix A.

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 139

(a) Teddy first frame. (b) Ground truth. (c) EPPM without HM (0.45).

(d) NNF-Local(0.35). (e) MDP-Flow 2 (0.38). (f) SVF+OH (0.37).

Figure 4.14: A visual comparison between our cost-sub-volume filtering with occlusion
handling (SVF+OH) method [80] against edge-preserving PatchMatch (EPPM) with-
out hierarchical matching (HM) [18], optical flow with nearest neighbour field (NNF-
Local) [50], and motion detail preserving optical flow (MDP-Flow2) [174], on the Teddy
Middlebury dataset. Note that EPPM without HM has a runtime of 2.5 seconds. The
EPE of each method is displayed in the caption.

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 140

Figure 4.15: A sensitivity analysis of the cost-sub-volume filtering with occlusion han-
dling (SVF+OH) method on the Middlebury optical flow training dataset: (top left) a
comparison of the average EPE versus the sub-volume expansion upper-bound parameter
γs and for different values of the expansion factor βs; (top right) a similar comparison
for the average angle error (AE); (middle row) the filtering time versus accuracy for dif-
ferent values of K (number of superpixels); (bottom row) the filtering time versus γs for
different values of K.

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 141

Figure 4.16: (Top row) Time-accuracy trade-off studyA time-accuracy trade-off study:
(top row) time versus accuracy for different values of K (number of superpixels) on the
clean and final passes of the MPI Sintel testing dataset. (Middle and bottom rows)
The; (middle and bottom rows) the convergence for 10 iterations (baseline is 7) of our
algorithm on the Wall and Ambush 3 datasets compared to other methods.

Chapter 4. Efficient Computer Vision Functionals: Pixel Labelling 142

I // Map
P
// Map

F
// Map

S
// Map

V
// Reduce // Reduce // Reduce // V

(a)

I // Map
P
// Scatter // ListMap // Merge

F
// Map

S
// Map

V
// Reduce // Reduce // Reduce // V

(b)

Figure 4.17: Describing the cost-sub-volume filtering (SVF) method using our stream
algebra: (a) the streaming pipeline of SVF executed using three GPUs; (b) the pipeline
in (a) executed on five GPUs. Each Reduce operator in (a) executes a predefined number
of sub-volume filtering iterations on a dedicated GPU. In (b), three GPUs are used by
the Reduce operators, and two GPUs are used to execute two replicas of the second Map
operator in (a) that computes the initial optical flow. Scatter and Merge are used to
distribute elements of the P stream in a round-robin fashion to a ListMap operator that
executes the two replicas, each on its dedicated GPU.

Chapter 5

Efficient Computer Vision

Functionals: Traffic Surveillance

Automatic analysis of traffic-video streams is an active research area in computer vision.

This area is important due to the large deployment of traffic-surveillance cameras, which

can generate terabytes of video per hour. This motivated research to develop vision-based

systems that can automatically gather traffic statistics and monitor, detect, and classify

significant road events, such as traffic congestion, rule violation, dangerous behaviours,

and incidents. One of the crucial tasks in these systems is automatic road and lane

detection, which allows a vision system to divide a traffic scene into road and non-road

regions. This task has several advantages. For example, it can provide a self-adaption to

camera viewpoint changes that result from a human operator or wind. It can also help

in reducing the computational time by only processing road regions.

Several techniques have been proposed for road and lane detection. These techniques

can be classified into activity-driven [154, 130], feature-driven [151, 6, 109], and model-

driven approaches [169, 189]. The activity-driven approaches rely on vehicular motion

activity to extract a scene-activity map. This map divides each image into active (road)

and inactive (non-road) regions. The feature-driven approaches rely upon the extraction

143

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance144

of image features to detect lane and road boundaries. The model-driven approaches

define a road geometric model and fit this model to road regions.

This chapter presents a novel online scheme [81] for automatic detection of dominant

road boundaries in traffic cameras. To find a dominant road boundary, our method

accumulates evidence over multiple images by looking for stable edges in an image

sequence. This makes our method immune to traffic variations that plague schemes

relying upon a single frame to identify road boundaries.

Road-boundary detection using traffic cameras is a non-trivial task. This is because

many of the traffic cameras typically mounted along highways are not calibrated, and

it is tedious and difficult to maintain their calibration. Moreover, these cameras are

usually equipped with pan and tilt features to enable human operators to change view

and monitor different regions in the traffic scene. This makes the cameras susceptible to

strong sway caused by wind. The traffic scene can also be noisy and barely visible under

adverse environmental conditions, such as rain, fog, and snow. Figure 5.1 shows several

examples of images in traffic-video streams recorded by cameras installed along Ontario

Highway 401. These examples present a variety of severe environmental conditions that

are usually encountered in traffic-video streams and that make the task of road-boundary

detection challenging.

Generally, the existing methods for road and lane detection can be classified into

three categories: (1) activity-driven [154][130], (2) feature-driven [146][6][109], and (3)

model-driven methods [189][169][39]. Activity-driven methods divide traffic images into

road and non-road regions based on observed vehicular motion and activity. These

methods usually build an activity map representing active and inactive regions in the

traffic scene. Feature-driven methods extract a combination of colour, texture, and

shape features from the traffic scene and use them to identify road and lane regions.

Model-driven methods learn a model of the road regions by applying either image classification

or model fitting. The recent work by Brust et al. [39], for example, applied deep

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance145

convolutional networks to learn a classification model that identifies road regions. Given

a video stream, this method generates a confidence map for each image that assigns each

pixel a likelihood of being in a road region. Model fitting was also applied by [189][169]

by learning a geometric model of road regions.

This chapter focuses on the automatic detection of dominant road boundaries in

traffic-surveillance imagery. The task is to identify road regions in each image of a traffic-

video stream. For many algorithms for traffic analysis, the detection of road regions is

a fundamental task used to support other higher-level analyses of the traffic scene by

localizing processing on road regions. Examples of such analyses include locating erratic

driving behaviour, finding stranded vehicles, monitoring traffic flows, etc. We present

a novel online algorithm [81] for automatic detection of dominant road boundaries in

traffic cameras. The proposed algorithm starts by extracting and accumulating edge

features from each frame in an input video stream (feature-driven method). Hierarchical

clustering is then applied to maintain a clustering tree on the accumulated edge features.

The clustering tree is automatically updated toward the addition of new edge features.

Each cluster contains a subset of accumulated edge features and represents a candidate

road boundary. Road boundaries are defined as straight lines, and each cluster has a

straight-line model representing the mean of its edge segments (model-driven method).

A rank is then assigned to each cluster using χ2 and student t statistical measures, and

the Cartesian product of the top statistically ranked clusters forms a set of candidate

pairs for the road boundary. Each pair is later ranked using perspective cues and road

vehicular activity (model-driven method). The dominant road boundary is selected as

the top-ranked pair.

To incrementally update the clustering tree by the extracted edges of new incoming

frames, we experiment with two methods: (1) incremental bottom-up hierarchical clus-

tering and (2) online top-down hierarchical clustering. In the first method, we initialize

the clustering tree using the extracted edges of the first incoming frame. Then, for each

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance146

subsequent incoming frame, we accumulate its extracted edge features. After accumu-

lating sufficient evidence, the algorithm builds a hierarchical bottom-up clustering tree

using all previously accumulated edges. We reinitialize the clustering tree after every 25

frames. This number was selected by trial and error. This however requires us to rebuild

the entire clustering hierarchy after every 25 frames, which results in a higher runtime

performance.

The second method uses the ClusTree [111] algorithm to build an online top-down

clustering hierarchy. This online algorithm approximates bottom-up clustering by main-

taining a clustering tree over a sliding window of the incoming video stream. When

new edges are inserted into the tree, the previous edges are removed. This removes the

requirement of the first method to reinitialize the clustering tree and thus significantly

improves the runtime performance. The online method also smoothly adapts to sudden

changes in road boundaries resulting from changes in the camera view.

From the perspective of stream processing, the incremental bottom-up hierarchical-

clustering method acts as a blocking stream operation when applied on an incoming

video stream. Blocking operations are not desirable for processing data streams, and

we will see later in the experimental results that this blocking operation results in a

significant performance decrease and limits the scalability of our road-boundary detection

algorithm. The online hierarchical-clustering algorithm acts as a non-blocking stream

operation; therefore, it is much faster than the incremental clustering method.

Experimental results are performed on two real-world datasets having traffic-image

sequences recorded from several traffic cameras installed along Highway 401. The first

dataset contains 14 low-resolution image sequences recorded from different camera loca-

tions under a variety of environmental and lighting conditions. Each sequence has 50

frames, 25 for daytime and another 25 for nighttime. The second dataset is a long image

sequence of 1,627 frames recorded from a single camera location. This dataset represents

a long stream of images and has the camera view changes by a human operator to focus

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance147

on different regions in the traffic scene.

A comparison is performed between our online and incremental clustering methods

and other state-of-the art approaches that include the Gabor filter-based method [109]

and the deep learning method by [39]. The results show that our online road-boundary

detection method outperforms both [109] and [39] in accuracy and runtime. We also

show that using the online clustering method in our road-boundary detection algorithm

is significantly faster than (roughly 800 times faster) using the incremental clustering

method.

The road-boundary detection algorithm provides four main contributions. First, the

algorithm is online and can accurately find dominant road boundaries under severe en-

vironmental and lighting conditions. Second, our method can accurately detect road

boundaries from low-resolution (320 × 240) video streams at 20 frames per second. Thus,

our method can operate well in bandwidth-limited environments typically found in large

camera networks. Third, our method can adaptively detect the road boundary under

changing camera-viewing directions. Finally, a statistical measure is developed for rank-

ing clusters, eliminating the need to use prior knowledge or apply heuristics. This sta-

tistical measure may be generally useful for cluster ranking in other similar applications.

5.1 Road-boundary Detection

The proposedOur method contains five steps: (1) superpixel segmentation, (2) con-

tour approximation, (3) hierarchical bottom-up clustering, (4) confidence assignment,

and (5) pairwise ranking. The following sections discuss each step.

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance148

Figure 5.1: Challenging environmental conditions encountered by traffic-surveillance
cameras.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.2: Hierarchy of superpixels generated using the method in [82]: (a) input image;
(b) result of applying morphological operations; (c) image after hue-saturation-value
(HSV) colour quantization; (d) over-segmentation (e) no. of superpixels = 25, (f) no. of
superpixels = 50, (g) no. of superpixels = 100, and (h) no. of superpixels = 150.

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance149

Algorithm 3 Overview of our algorithm for finding dominant road and lane regions.

Require: Image sequence
Ensure: Dominant road boundary

1: Divide each image into homogeneous regions through superpixel segmentation.
2: Approximate each superpixel contour with polygons to obtain edges.
3: Perform bottom-up hierarchical clustering on these edges.
4: Use statistical measures (χ2 and student t test) to identify the top-ranked clusters,

where each cluster represents a road boundary in the image.
5: Construct top-ranked cluster pairs through perspective filtering and road-activity

analysis.
6: The top-ranked cluster pair is returned as the dominant road boundary.

5.1.1 Superpixel Segmentation

Edges are one of the fundamental features for identifying dominant road and lane bound-

aries in traffic scenes. The main problem of these features is the existence of large noise

from changes in environmental and lighting conditions affecting the performance of edge-

detection algorithms. To handle such noise, several existing algorithms rely on prior

knowledge of the road structure. In this work, we take a different approach. Road re-

gions span large areas in the traffic scene. Although the boundaries of these regions

may be noisy and occluded, some sections of these boundaries can be detected correctly.

Thus, the task is to find these correct segments and use them to detect the entire road

boundary.

We start by applying superpixel segmentation to extract a set of abstract regions.

Superpixel segmentation [141] divides an image into a set of regions called superpixels,

so that each pixel in the image belongs to only one superpixel. Pixels belonging to a

superpixel are neighbours sharing similar appearance attributes (e.g., colour and texture).

Several superpixel segmentation methods [135, 117, 49, 181] are slow and do not meet

the fast processing requirements of traffic-video analysis. TurboPixels [113] and SLIC [1]

are fast alternative methods for superpixel segmentation. TurboPixels [113], however,

requires an initial manual choice of seed points, and SLIC requires manually setting the

superpixel compactness parameter.

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance150

In this work, we use the fast superpixel segmentation method by [82]. This method can

generate a set of 100 superpixels in 0.339 seconds compared to 5 seconds for TurboPixels.

The method is simple and can be parallelized for real-time processing. Figure 5.2 shows

an example implementation of the method by [82] on a daylight traffic image. The method

starts by performing a morphological open operation followed by a close operation. The

open operation smooths noisy areas and contours in images. For example, the operation

eliminates tiny bumps and breaks narrow strips. The close operation eliminates small

holes and gaps and helps link noisy contours. The resulting image is then represented

in hue-saturation-value (HSV) colour space, and an HSV histogram of 16 × 8 × 8 bins

is created. A colour quantization step is then performed by assigning each pixel to the

colour bin closest to it. Neighbouring pixels are then merged together based on colour

similarity to form an initial set of regions (see Figure 5.2d). Adjacent regions are further

merged together to create a hierarchy of superpixels.

Figures 5.2e to 5.2h present superpixel segmentation examples when setting the num-

ber of superpixels to values from 25 to 150. These figures show an important observation.

Although the boundaries of these superpixels change due to environmental and lighting

conditions, large segments of these boundaries still capture stable edges showing the

road structure. Our method utilizes this observation to gather stable edge information

representing the geometry of the traffic scene.

5.1.2 Contour Approximation

To extract edges, our algorithm uses adaptive sampling [59] to obtain a 2D polygon

approximation for the contour of each superpixel. Given the superpixel contour described

as a 2D parametric curve γ ∶ [0,1]→ r2, adaptive sampling approximates the contour by

selecting a set of n points with timing t1 < t2 < ⋯,< tn, and t0 = 0 and tn = 1 corresponding

to the vertices v1 = γ(t1),⋯, vn = γ(tn) such that n is as small as possible.

Our method starts by randomly selecting two points on each superpixel contour vl =

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance151

(a) (b)

(c) (d)

Figure 5.3: Generating an approximate polygon using adaptive sampling: (a) generated
polygons for superpixels in Figure 5.2e; (b) edges with a length greater than 10 pixels;
(c) selected superpixel from (a); (d) edges with length greater than 10 pixels for the
superpixel in (c).

γ(l) and ve = γ(e), where l = 0 is the starting point and e = 1 is the ending point.

Then, an approximate polygon is generated using Algorithm 4. The algorithm works by

choosing a point vm = γ(m) with l <m < e. Then, a flatness test is performed to measure

the collinearity of the points vl, vm and ve. This by checking if the two tangents ÐÐ→vlvm and

ÐÐ→vmve are nearly parallel. If vlvmve is a flat segment, it will be listed in the approximate

polygon; otherwise, the test is recursively applied on the two intervals [l,m] and [m,e].

Over-sampling is a known problem for adaptive sampling, where a straight segment

can be oversegmented into smaller segments. Our algorithm handles such problems by

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance152

Algorithm 4 Approximate-Contour.

Require: γ, l, e
Ensure: Straight edges.

1: Set vl = γ(l), ve = γ(e), m = 1
2(l + e), and vm = γ(m).

2: If the curve tangents at vl, vm and ve are almost parallel, then
Output the straight segment vlve.

3: Otherwise,
Approximate-Contour (γ, l,m).
Approximate-Contour(γ,m, e).

removing intermediate vertices within an almost flat segment. Figure 5.3 presents an

example of applying adaptive sampling for polygon approximation of superpixel con-

tours. Figure 5.3b shows approximated polygon segments with lengths greater than 10

pixels. Figures 5.3c and 5.3d present the approximate polygon for a selected superpixel,

which shows the effectiveness of Algorithm 4 in approximating the polygons of superpixel

contours.

5.1.3 Online Hierarchical Clustering

Our method generates the approximate polygons from each frame and accumulates their

line segments over time. Figure 5.4 shows a subset of a clustering hierarchy tree with four

nested clusters of line segments accumulated from a sequence of frames. Accumulated

line segments will be more concentrated around stable line edges in the scene and less

concentrated around temporary edges from a transient change of lighting or environmen-

tal conditions. We use this property to find a set of clusters with small variance and

dense colinear segments that can be good candidates for road boundaries.

We start by applying our incremental clustering method [75], where we use agglom-

erative bottom-up hierarchical clustering with average linkage to build a clustering tree

of accumulated line segments. A line segment is defined as a 2D vector (ρ, θ) in polar

coordinates. The set S = {si∣i = 1⋯n} is defined as the set of all line segments generated

by a given sequence of frames. Our algorithm normalizes the set S to zero mean and unit

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance153

(a) (b) (c) (d)

Figure 5.4: Subset of a generated clustering hierarchy tree, showing the accumulated line
segments in four nested clusters: (a) root cluster, (b) and (c) two nested clusters with
large variance, and (d) a good candidate cluster for a road boundary, which has small
variance and a large number of accumulated segments.

variance. Agglomerative clustering starts by assigning a cluster ci to each line segment in

si ∈ S. Then, every two closest pairs of clusters are merged together. This merging oper-

ation is repeated until one cluster is left representing the root of the generated clustering

hierarchy.

As stated earlier, if we incrementally updated the generated clustering tree for every

incoming frame, the size of the generated clustering tree will grow over time. This

behaviour results in very slow runtime performance as the tree becomes large. This also

assumes that the camera does not change its viewing direction and stays fixed. Such an

assumption does not hold in reality, and a very noisy clustering tree can be generated.

It also becomes infeasible to maintain the clustering tree for long and infinite video

streams. Thus, our incremental bottom-up clustering method handles such limitations by

dividing the video stream into a sequence of clips, each spanning 25 frames. A clustering

tree is then generated for line segments accumulated within every clip. Therefore, our

incremental clustering method rebuilds the clustering tree every 25 frames. This results in

a performance decrease as the entire hierarchy should be rebuilt from scratch. Moreover,

each clip loses the clustering information generated from previous clips.

Our online clustering method provides a better solution that handles the limitations

of the incremental clustering method. The online method utilizes the ClusTree [111]

algorithm for generating an online top-down hierarchical clustering. The algorithm keeps

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance154

adding new incoming evidence and removing old information. This solves the limitations

of the incremental clustering method by having an order of magnitude speed increase

and accurately adapting to changes in the camera view. The ClusTree algorithm builds

an R-tree based multidimensional index, where each tree node represents a cluster and

has an associated feature vector CF = (n,LS,SS), a timestamp variable t, and pointers

to children nodes. The timestamp variable records the last update time of the feature

vector of the node, where n is the number of line segments inserted to the node cluster.

In addition, LS = ∑n
i=1 si defines the linear sum of all inserted segments, and SS = ∑n

i=1 s2
i

defines the squared sum. For a given cluster, CF defines its sufficient statistics vector.

This vector contains the components required to incrementally update the cluster mean

and variance. The mean is calculated as µ = LS/n, and the variance is σ2 = (SS − 2µ ×

LS + µ2)/n To forget old elements, the CF vector is weighted by an exponential decay

function ω(∆t) = βλ∆t controlled by the decay rate λ. Thus, after every cluster update,

the components of its feature vector are weighted as follows:

n(t) =
n

∑
i=1

ω(t − tsi), (5.1)

LS(t) =
n

∑
i=1

ω(t − tsi)si, (5.2)

LS(t) =
n

∑
i=1

ω(t − tsi)s2
i , (5.3)

where t represents the current time, and for each line segment si, tsi is the arrival time

of si. It was proved by [111] that this weighting of cluster features maintains both the

additive and temporal multiplicity properties. For example, if a cluster did not receive

any objects within an interval [t, t+∆t], its cluster feature is CF (t+∆t) = ω(∆t)CF (t). In

addition, a cluster with k children has the cluster feature CF (t+∆t) = ω(∆t)∑k
i=1CF

(t)
i ,

where CF
(t)
i is the cluster feature of the i-th child. We refer the reader to [111] for the

full proofs of these properties.

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance155

The online top-down clustering works by attaching the current timestamp ts to each

new incoming 2D line segment s described in polar coordinates. When the clustering tree

is empty, a new root node is created with a cluster feature vector that is initialized by

the incoming 2D line segment object. The timestamp of the new root node is set to ts.

The next incoming segment will first be inserted into the root node of the clustering tree.

Then, the object descends into the child node that has the closest Euclidean distance

between its mean and the object. If we reached a leaf node, a new child cluster will be

created for the new object, and we stop descending into the tree. While descending into

the tree, the new object is inserted at each nested cluster it passes by. Three actions are

performed when inserting a new line segment object s into a tree node. (1) The feature

vector of the node cluster is updated by adding the new object, n = n + 1, LS = LS + s,

and SS = SS + s2. (2) The feature vector is multiplied by the decay function ω(t − ts).

(3) The node timestamp is updated to the object timestamp t = ts. While descending

into the tree, the algorithm also checks for outdated child clusters that have n(t) < βλ∆tc .

These clusters are deleted, and ∆tc controls the deletion rate.

Notice that if we keep inserting objects into the clustering tree, it can grow forever

and have a very great height. Thus, we usually predefine the maximum height of the

clustering tree. When the maximum height is reached at a given leaf node, we only insert

new objects to the cluster vector of the node and stop creating new child clusters. Fig-

ure 5.4 shows line segments accumulated in four nested clusters of a generated clustering

hierarchy. The innermost cluster clearly represents a road edge.

Given an incoming video frame, our online clustering method inserts all approximated

line segments into the top-down clustering tree. Then, all clusters visited by the line

segments of the frame are recorded and used as the candidate set of road edge clusters

for this frame.

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance156

5.1.4 Confidence Assignment

The algorithm proceeds by statistically ranking the set of candidate clusters using the

cluster variance and number of samples. The target is to penalize clusters having a

small number of samples or exhibiting high variance. To perform ranking, we start by

modelling a road boundary as a line described by the parametric form:

m̂u +Ð→v , u ∈ R, (5.4)

where Ð→v and m̂ are an offset vector from the origin and a directional unit vector, respec-

tively. A segment belonging to a road edge is then defined as:

Ð→msu +Ð→vs , u ∈ [a, b]. (5.5)

Using Equations 5.4 and 5.5, we can define the generative model:

Ð→ms =
⎡⎢⎢⎢⎢⎢⎢⎣

cos(φ) − sin(φ)

sin(φ) cos(φ)

⎤⎥⎥⎥⎥⎥⎥⎦
⋅ m̂, φ ∈ N (µ1, σ

2
1), (5.6)

Ð→vs = ρÐ→v , ρ ∈ N (µ2, σ
2
2). (5.7)

Here, φ and ρ are Gaussian random variables with noise controlled by the parameters

θ = (µk, σ2
k)k=1,2. Our model can then be represented by the probability P (π∣θ), where

π = (Ð→m,Ð→v) defines the hidden variables of a true road-boundary line.

Figure 5.5 presents the ρ and φ histograms for the line segments belonging to the

clusters in Figure 5.4. The first column presents the ρ and φ histograms for the root

cluster in Figure 5.4. As seen, the histograms are very noisy with many peaks. Each

of these peaks indicates a group of line segments with similar ρ and/or φ values. Such

groups can be captured later by sibling clusters. The second column shows the histograms

of the second nested cluster shown in Figure 5.4b. The φ histogram is clearly normally

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance157

(a) ρ histograms.

(b) φ histograms.

Figure 5.5: Histograms of ρ and φ for each cluster in Figure 5.4: (a) ρ histograms and
(b) φ histograms. The first column is for the root cluster in Figure 5.4 and large noise
is expected and seen in the histograms. The second column shows the histograms for
the nested cluster in Figure 5.4b. The φ histogram is normally distributed, and the
ρ histogram is the least noisy with a few clear peaks. The third column shows the
histograms for the cluster in Figure 5.4c. The last column presents the histograms for
the cluster in Figure 5.4d, which fits a road-boundary edge with very low noise well.

distributed, while the ρ histogram still has several peaks. The last column presents

the histograms for the cluster in Figure 5.4d, which are normally distributed and fit a

road-boundary edge well with very low Gaussian noise.

To confirm our assumption of normality, we perform the ShapiroWilk test of normality

for each histogram in Figure 5.5 [58]. ShapiroWilk tests the null hypothesis that a given

sample population (x1, ..., xn) is drawn from a true normally distributed population. The

test statistics is given by,

W =
(∑n

i=1 aix(i))
2

∑n
i=1(xi − x̄)2

, (5.8)

where x(i) is the ith order statistics or the ith smallest value in the given sample popu-

lation. x̄ is the sample mean and the coefficients a = (a1, ..., an) is given by,

a = mTV −1

(mTV −1V −1m)1/2 , (5.9)

where m and V are the mean and covariance of the order statistics respectively (see [58]).

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance158

W-stat 0.767 0.938 0.885 0.862
p-value 6.19×10−10 0.396 0.068 0.269
α 0.05 0.05 0.05 0.05
normal no yes yes yes

(a) ShapiroWilk test of normality for the ρ histograms
in Figure 5.5a

W-stat 0.951 0.972 0.959 0.835
p-value 1.23×10−2 0.62 0.681 0.182
α 0.05 0.05 0.05 0.05
normal no yes yes yes

(b) ShapiroWilk test of normality for the φ his-
tograms in Figure 5.5b

Table 5.1: ShapiroWilk test of normality for the ρ and φ histograms in Figure 5.5: (a)
ShapiroWilk test for the ρ histograms in Figure 5.5a; (b) ShapiroWilk test for the φ
histograms in Figure 5.5b. Every column shows the test result of the corresponding
histogram in the same left to right order. We test the null hypothesis that the sample
data is normally distributed. W-stats is the calculated test statistics. p-value is the
probability that the null hypothesis is true. α defines the significance level. The normal
row defines the test output, where the null hypothesis is rejected if p-value is less than
α, and is accepted otherwise.

Given the value of the test statistics and following the standard normal distribution, we

calculate the p-value which is the probability that the null hypothesis is true. If the

p-value is less than a predefined significance level α, the null hypothesis is rejected,

otherwise, it is accepted. Here we set α =0.05.

Table 5.1 shows the ShapiroWilk test results. Table 5.1a shows the results for each ρ

histogram in Figure 5.5a, whereas Table 5.1b shows the results for each φ histogram in

Figure 5.5b. The columns in each table show the test outputs in the same left to right

order as the corresponding histograms in Figure 5.5. We can see that the test results

shown in the bottom row of each table confirm our normality assumption for all nested

clusters in Figure 5.4. As expected, the root cluster failed the test.

Figure 5.6 shows the quantile-quantile (Q-Q) plots [58] for visually testing the nor-

mality of each histogram in Figure 5.5. Each plot compares the probability distribution

defined by each histogram against the normal distribution. If the distributions are simi-

lar, the plot points should approximately lie on a line. We show a reference line in each

plot to measure how the compared distributions deviate from each other. We can see

that all plots have points that approximately follow the reference line except the first

plots from the left that correspond to the root cluster.

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance159

(a) Quantile-quantile (Q-Q) plots for comparing ρ histograms in Figure 5.5a against normal distribution.

(b) Quantile-quantile (Q-Q) plots for comparing φ histograms in Figure 5.5b against normal distribution.

Figure 5.6: Quantile-quantile (Q-Q) plots for visually testing normality by comparing the
probability distribution of each histogram in Figure 5.5 against the normal distribution:
(a) The Q-Q plots for each ρ histogram in Figure 5.5a, in the same left to right order;
(b) The Q-Q plots for each φ histogram in Figure 5.5b, in the same left to right order.
If the compared distributions are similar, the points should approximately lie on a line.
A reference line is shown in each graph to measure how far the compared distributions
deviate from each other.

Figure 5.5 emphasizes the fact that our generative model has expected Gaussian noise.

We can also see that hierarchical clustering can generate good cluster summaries for road-

boundary edges. Using the generative model, we assume that every cluster c is a subset

of a normally distributed population that has its true mean π∗ as a road-boundary line.

Thus, cluster c has a set of observed random samples drawn from the population, where

the cluster mean π̃ is an unbiased estimate of π∗. Our target is to test whether π̃ is a

good estimate of π∗. This is done by measuring the quality of a cluster in representing

a true boundary. Such quality can be written as:

quality (c) = P (∥π∗ − π̃∥ ≤ ε) (5.10)

=∏
x̃∈π̃

x̃+ε

∫
x̃−ε

N (u∣µx̃, σ2
x̃)du, (5.11)

where quality (c) has a high values if π̃ fits π∗ well and has lower values as π̃ diverges

from π∗. Moreover, π̃ is also described as a vector of independent normally distributed

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance160

random variables with each x̃ ∈ π̃ having parameters (µx̃, σ2
x̃) and µx̃ ∈ π∗. For simplicity,

we refer to (µx̃, σ2
x̃) as (µ,σ2). Given that µ and σ2 are random variables, quality (c) is

a random variable with the following expectation:

E (P (∥µ − x̃∥ ≤ ε))) = E (
x̃+ε

∫̃
x−ε
N (u∣µ,σ2)du)

=
∞

∫
−∞

dµ

+∞

∫
0

dσ2

x̃+ε

∫
x̃−ε

duN (u∣µ,σ2)P (µ,σ2∣c).
(5.12)

Applying conditional probability, we obtain:

P (µ,σ2∣c) = P (σ2∣µ, c)P (µ∣c) = P (σ2∣c)P (µ∣c) . (5.13)

Now, µ and σ2 are independent; thus, the integral of Equation 5.12 is:

∞

∫
−∞

dµ

+∞

∫
0

dσ2

x̃+ε

∫
x̃−ε

duN (u∣µ,σ2)P (σ2∣c)P (µ∣c), (5.14)

and we can define the inner integral:

h(σ2, x̃ − µ) =
x̃+ε

∫
x̃−ε

duN (u∣µ,σ2) (5.15)

= 1√
4
(erf (x̃ − µ + ε√

2σ
) − erf (x̃ − µ − ε√

2σ
)) , (5.16)

where erf is the error function. We can define g(σ2) = P (σ2∣c), f(µ) = P (µ∣c), and have

the inner product:

(g.h) (x̃ − µ) =
+∞

∫
0

dσ2g(σ2)h(σ2, x̃ − µ). (5.17)

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance161

Equation 5.12 then becomes:

E (P (∥µ − x̃∥ ≤ ε))) =
∞

∫
−∞

dµ f(µ) (g.h)(x̃ − µ) (5.18)

=f ∗µ (g.h), (5.19)

and ∗µ is the convolution operator on µ. Equation 5.18 reduces the expected cluster

quality to an expression that is easy to evaluate. Notice that Equation 5.19 gives a high

expectation value for a given cluster, when the estimated mean x̃ fits the true mean µ

well.

Given the unknown true mean µ and variance σ2 of a given cluster, we use Bayesian

inference to find the posterior probability distribution of σ2 as follows:

P (σ2∣c)∝ P (σ2)P (c∣σ2) (5.20)

∝ 1

σn+2
e−
∑ni=1(xi−µ)

2

2σ2 . (5.21)

Here, Jeffrey’s prior is used by setting p(σ2) = 1
σ2 . Given the unknown mean µ, we have:

P (σ2, µ∣c)∝ 1

σn+2
e−
∑ni=1(xi−µ)

2

2σ2 (5.22)

∝ 1

σn+2
e−
∑ni=1(xi−x̃)

2

2σ2 e−
∑ni=1(µ−x̃)

2

2σ2 . (5.23)

The marginal probability distribution for σ2 is defined as:

P (σ2∣c)∝ 1

σn+2
e−
∑ni=1(xi−x̃)

2

2σ2

∞

∫
−∞

e−
∑ni=1(µ−x̃)

2

2σ2 dµ (5.24)

= 1

σn+2
e−
∑ni=1(xi−x̃)

2

2σ2

√
2πσ2

n
(5.25)

∝ (σ2)−
(v+2)

2 e−
vs2

2σ2 , (5.26)

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance162

where v = n − 1 is degree of freedom, and s2 = ∑ni=1(xi−x̃)2
v is the estimated variance.

This defines a scaled inverse chi-squared distribution [66] χ2
S.inv(σ2, v, τ 2), which is the

distribution of squares of v independent normal random variables that have zero mean

and τ 2 = s2 as the scaling parameter.

χ2
S.inv(σ2, v, τ 2)∝ (σ2)−(1+ v2)e−

vτ2

2σ2 (5.27)

The marginal probability distribution for µ can be also defined using Bayesian inference

as follows:

P (µ∣c) = ∫ P (µ,σ2∣c)dσ2 (5.28)

= ∫ P (µ∣σ2, c)P (σ2∣c)dσ2, (5.29)

where:

P (µ,σ2∣c)∝ P (µ∣σ2, c)P (σ2∣c), (5.30)

which also implies:

1

σn+2
e−
∑ni=1(xi−x̃)

2

2σ2 e−
∑ni1(µ−x̃)

2

2σ2

∝ P (µ∣σ2, c)(σ2)−
(v+2)

2 e−
vs2

2σ2 , (5.31)

and this gives:

P (µ∣σ2, c) = N (x̃, σ
2

n
) (5.32)

∝ 1√
σ2
e−

n(µ−x̃)2
2σ2 . (5.33)

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance163

(a) (b)

Figure 5.7: Estimated quality for different clusters accumulated from 25 frames: (a)
mean of clusters with around 20 line segments; (b) mean lines of clusters with around 60
segments. Increased colour intensity indicates high cluster confidence.

Equation 5.29 is then defined as:

P (µ∣c)∝
∞

∫
0

1√
σ2
e−

n(µ−x̃)2
2σ2 (σ2)−

(v+2)
2 e−

vs2

2σ2 dσ2 (5.34)

∝
∞

∫
0

σ−v−3e−
1

2σ2
(n(µ−x̃)2+vs2)dσ2 (5.35)

∝ (1 + n(µ − x̃)
2

vs2
)
−(v+1

2
)

. (5.36)

This is the standard student t distribution [66] defined as,

stud(t)∝ (1 + t
2

2
)
−(v+1

2
)

, (5.37)

where v is again the degree of freedom and t = µ−x̃
s/

√
n
. The functions f(µ) and g(σ2) define

the marginal distributions of σ2 and µ. Given that g(σ2) is a scaled inverse chi-squared

distribution and f(µ) is a student t distribution, confidence intervals can be defined for

σ2 and µ. This allows us to calculate Equation 5.19 numerically. In all experiments, the

confidence intervals are set empirically as follows: (1) µ = σ2 = 0.95 and (2) ε = 0.05.

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance164

(a) (b)

Figure 5.8: Applying perspective filtering and activity ranking on pairs of clusters: (a)
Perspective filtering is shown with the red arrow pointing downward; (b) Activity ranking
with vehicular traffic is shown as circles. Candidate cluster pairs with solid lines are those
preserved after perspective filtering and activity ranking.

Equation 5.19 assigns low confidence to both high-variance clusters and low-variance

clusters with a small number of samples. The equation also assigns high confidence to low-

variance clusters with many samples. The high-confidence clusters are good candidates

for road boundaries, which represent the dominant image edges accumulated from a

sequence of frames. Given the cluster confidence, a threshold T is defined to select the

top-ranked clusters. In this work, T selects the top 20% ranked clusters. Figure 5.7 shows

the estimated quality for a set of clusters accumulated over time. Figure 5.7a draws the

mean line of each cluster in the top 20% of the highly ranked clusters, where ranking

is performed using cluster confidence. Increased colour intensity indicates high cluster

confidence. Figure 5.7b shows a set of selected clusters from Figure 5.7a accumulating a

large number of line segments. Notice that our quality measure assigns high confidence

to the stable edges. Here, the mean line of each cluster is calculated by projecting its

line segments on the cluster mean and calculating the extent of all projections. This

provides the ability to detect long road edges, even if gaps or missing sections exist due

to occlusions or lighting changes.

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance165

5.1.5 Pairwise Ranking

Given the set of high-confidence clusters representing the dominant edges accumulated

from a stream of traffic-video frames, we detect the road and lane boundaries by applying

further filtering operations. To do that, our algorithm applies a heuristic that groups

clusters into pairs that are ranked using the camera perspective cues and image vehicular

activity. The top-k cluster pairs are then chosen as dominant lane and road boundaries.

Figure 5.8 shows the steps of our pairwise ranking method. It starts by finding the

vanishing point for each cluster pair. Then, we use the camera perspective view and

the fact that the vanishing point should be located upward in the image to filter out all

cluster pairs with the vanishing point pointing downward (see Figure 5.8a). Next, we use

a confidence score rConf and an activity score rActivity to rank the survived pairs, where

the rank of cluster pair (i, j) is defined as:

r(i, j) = r(i,j)Conf × r
(i,j)
Activity, (5.38)

where:

r
(i,j)
Conf = Conf(ci) × ni ×Conf(cj) × nj, (5.39)

r
(i,j)
Activity =

#objects within (i, j) region

area spanned by (i, j) region
, (5.40)

where Conf(ci) is the cluster ci quality estimated by Equation 5.10. The area of a cluster

pair (i, j) is defined as the image area within the mean lines of clusters ci and cj. The

quality rank r
(i,j)
Conf promotes cluster pairs with low variance and numerous accumulated

line segments. The activity rank gives preference to cluster pairs containing high vehicular

activity with the assumption that dominant lane and road boundaries enclose vehicular

traffic. Notice that vehicular activity is found by detecting the foreground moving objects

using background subtraction [112]. Then, our method counts the number of objects lying

within the area enclosed by each cluster pair.

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance166

5.2 Experimental Results

Experimental results are performed on two datasets of traffic-image sequences: Dataset

1 and Dataset 2. These datasets are captured from traffic-video cameras at several

locations along Ontario’s Highway 401. Dataset 1 contains 14 video sequences captured

from different camera locations at a resolution of 320 × 240. Half of the frames in each

sequence (25 frames) are recorded during the daytime and the other half during the

nighttime. Dataset 2 contains a very long video sequence of 1,627 frames captured from

one camera location at a resolution of 704 × 480. The dataset has both daytime and

nighttime frames and exhibits changes in the camera viewpoint. Image sequences in

both Dataset 1 and Dataset 2 have a wide range of severe environmental and lighting

conditions, such as headlight glare, unlit roads that are only seen by the light of vehicles,

shadows, camera shake, changes in traffic density, etc. Moreover, all datasets have frames

recorded every 15 minutes to cover the different environmental changes during the day.

For ground truth, we manually label the road areas in each image frame in the datasets.

The parameters of our algorithm are set as follows. (1) The number of superpixels is

100. (2) For online clustering, β = 2, λ = 0.2, and ∆tc = 3 (seconds). (3) The maximum

clustering tree height is 9.

Our method is compared against the Gabor filter-based method (Gabor method) by

[109] and the classification-based scheme (CN24) by [39]. The Gabor method relies on

Gabor filters to extract a set of image features that are used to determine the dominant

road boundary. The CN24 method uses an offline learning stage to train a deep convo-

lutional neural network for classifying image pixels as either road or non-road. It works

by generating a confidence map assigning each pixel the likelihood of being a road. This

map is normalized, and pixels with likelihood values greater than 0.5 are considered road.

Our algorithm is written in C++ and Go language, and all experiments are performed

on a 2.9 GHz quad-core AMD Athlon processor. The algorithm was also implemented as

a concurrent streaming pipeline. We will discuss this pipeline later in Section 5.4. The

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance167

Gabor and CN24 are executed using the authors’ code.

To better measure the performance of our algorithm, we define four versions of our

algorithm: (1) V1, which does ranking of cluster pairs using only the quality estimate

relying on the χ2 and student t tests; (2) V2, which uses the ranking of V1 plus fil-

tering using the perspective cues; (3) V3, which uses the ranking and filtering of V2

and performs activity ranking; and (4) V4, which is similar to V3 but uses our on-

line hierarchical-clustering method. The V1, V2, and V3 methods use the incremental

bottom-up hierarchical-clustering approach.

5.2.1 Dataset 1

Figure 5.9 shows a visual comparison between the results of V1, V2, V3 and V4 methods.

We can notice the poor results of V1 and V2 methods. V1 only performs statistical

ranking of cluster pairs, which gives preference to cluster pairs that have a large number

of samples indicating that they persisted over a sequence of frames. These pairs, however,

may be produced by noise or man-made structures in non-road areas. Due to the road

perspective, most of the man-made structures exist in the upper part of images, with the

lower part mostly covered by road areas. We can see that V1 did not detect any road

region in Brock Road location. The detected regions in DVP and Reynolds covers the

road area, however, the detected boundaries are attracted to non-road structures and

do not align with the actual road boundaries. V1 also has the detected road boundary

in Avenue location pointing downward against the actual road perspective. The V2

method extends V1 by filtering using perspective cues. V2, however, did not detect

road regions in Brock Road, DVP, and Reynolds, because the top-ranked boundaries are

again attracted to non-road structures. Both V1 and V2 performed well on the Liverpool

location, however, V2 outperformed V1 on Avenue location. These results match well the

outcome of the precision and recall comparisons in Table 5.2, where V1 provides higher

precision and lower recall than V2. The reason is that V2 has more cluster pairs than V1

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance168

with some pairs covering the road area, while aligned with edges in non-road structures.

Figure 5.10 shows the experimental results of V4 against the results of Gabor [109]

and CN24 [39] methods on eight traffic-image sequences generated by different camera

locations during the daytime. The first column presents the ground truth generated by

manually labelling the road regions. The second and third columns show the results

from [109] and [39], respectively. The last three columns show the top three ranked

dominant boundary lines generated by V4. Note that the traffic images in the Avenue

camera location show a partially occluded highway. Despite such challenges, V4 can

detect the correct dominant road boundary.

Figure 5.11 also shows the results of V4 against the results of Gabor [109] and

CN24 [39] on eight traffic-image sequences recorded at different camera locations dur-

ing the nighttime. The first column shows the manually labelled ground truth. The

second and third columns show the results from [109] and [39], respectively. The last

three columns show the top three ranked dominant road boundaries computed by V4.

Note that the road regions are barely visible in some nighttime image sequences. For

example, the fifth and eighth rows show dark roads that are only visible by vehicle head-

lights. Despite these severe environmental challenges, V4 provides a better estimate of

the dominant road boundary than the Gabor and CN24 methods.

We also perform comparisons of runtime, precision, and recall [14] between the V1,

V2, V3, V4, Gabor, and CN2 methods. Precision is calculated as a/r, where a is the

area of the intersection between the ground truth and the detected road boundary, and

r is the total area of the detected road boundary. Recall is measured as a/g, where g is

the area of the ground truth.

Figure 5.12 shows comparisons between our V4 method and other techniques. The

number shown on the horizontal axis defines the size of the sliding window used for

accumulating evidence. Clearly, V4 outperforms the Gabor, CN24, V1, and V2 methods

on both precision and recall measures, whereas V4 gives similar performance as V3. For

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance169

Methods Precision Recall Average Runtime (seconds)

ProposedV4 [81] 77%±24% 75%±25% 0.05
V1 (Conf) 24%±36% 45%±39% 0.05
V2 (Conf+Persp) 16%±25% 48%±37% 0.05
V3 [75] 80%±25% 77%±37% 40
Gabor [109] 60%±31% 52%±31% 40.2
CN24 [39] 40%±21% 41%±34% 18.8

Table 5.2: Dataset 1. A summary of the mean and standard deviation statistics for the
precision and recall comparisons shown in Figure 5.12. Moreover, we show the average
runtime (in seconds) of each compared method.

runtime comparison, V4 is shown to be significantly faster than Gabor, CN24, and V3.

However, V1 and V2 are not included in the runtime comparison for their clear poor

precision and recall accuracy. Notice that V3 and V4 have the same perspective filtering

and pairwise ranking steps. The importance of these steps is clear from comparing the

performance of the V1 and V2 methods against the V3 method.

Table 5.2 lists the average µ and standard deviation σ of the precision and recall mea-

sures. For average precision, the V3 and V4 methods achieve 77% and 80%, respectively,

whereas Gabor and CN24 achieve 60% and 40%, respectively. For average recall, V3

and V4 achieve 77% and 75%, whereas Gabor and CN24 achieve 52% and 41%, respec-

tively. The V1 and V2 methods have low precision and recall values. This proves that

road-activity cues are important in identifying road regions. Additionally, note that V3

achieves the best accuracy. This is due to the agglomerative bottom-up hierarchical step

used in V3, which builds a true clustering hierarchy. The V4 method builds an online

top-down hierarchical clustering, which approximates the bottom-up hierarchy. However,

V4 is significantly faster than V3, as V4 is 300 times faster than CN24 and 800 times

faster than Gabor and V3.

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance170

5.2.2 Dataset 2

Dataset 2 contains a single long traffic-video stream recorded by one camera over a period

of three days. The camera moves and changes its viewing direction between eight different

traffic scenes. Camera movement is done manually by human operators or automatically

by a predefined schedule. For Gabor and CN24 methods, the camera view changes have

no effect on estimating road regions, as these methods process a single frame at a time.

Our V3 and V4 methods have to deal with the challenge of changes in camera view as

they collect evidence over a sequence of frames. Furthermore, V3 handles this challenge

in an ad-hoc fashion by rebuilding the clustering hierarchy from scratch after every 25

frames. However, V4 applies online clustering and can forget old information.

Figure 5.13 shows a visual comparison between V4, CN24, Gabor, and V3 methods on

example frames from Dataset 2. Note that the frames show different viewing directions

of the monitored traffic scene. The first column shows the ground truth. The remaining

columns from left to right show the road boundaries estimated by Gabor, CN24, V3, and

V4, respectively. Each row indicates a certain camera-viewing direction. Gabor gives

the lowest performance. However, CN24 performs well on daytime frames and poorly

on nighttime frames. Moreover, V4 provides the best performance and outperforms V3

when encountering changes in camera-viewing direction. This important observation is

also verified by the performance comparison shown in Table 5.3. For average precision,

the V4, V3, CN24, and Gabor methods achieve 90%, 47%, 64%, and 78%, respectively.

For average recall, the V4, V3, CN24, and Gabor methods achieve 71%, 76%, 49%, and

43%, respectively. These performance numbers confirm that our method can better deal

with camera movement. Moreover, the V4 method achieves significantly faster runtimes

than the other compared methods. Furthermore, V4 has a 0.13-second average runtime

per frame for Dataset 2. This gives a speed increase of about 1,500 times over V3, 600

times over CN24, and 400 times over Gabor.

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance171

Methods Precision Recall Average Runtime (seconds)

ProposedV4 [81] 90%±11% 71%±20% 0.13
V3 [75] 47%±33% 76%±22% 200
Gabor [109] 78%±14% 43%±12% 54.9
CN24 [39] 64%±26% 49%±43% 81.5

Table 5.3: Dataset 2. Mean and standard deviation statistics for the precision and recall
comparisons on Dataset 2. The last columns show the average runtime in seconds for
each method.

5.2.3 Sensitivity Analysis

Figure 5.14 shows a sensitivity analysis of the performance of the V4 algorithm against

the user-defined parameters. For each experiment, we set the parameters to their default

values except for the studied parameter and the number of superpixels N . The top row

shows precision and recall versus the decay rate λ used by online hierarchical clustering.

This rate controls how fast the algorithm forgets stale edges. The larger the rate, the

faster the algorithm to forget state information. We can notice that the recall increases

with increasing the number of superpixels, whereas the precision decreases as λ increase.

We expect the decrease in precision because the algorithm has a faster forgetting rate

and loses sufficient evidence for road boundaries. The middle row of Figure 5.14 presents

precision and recall versus different values of the parameter defining the minimum length

of segments used for polygon approximation. We again notice that the recall increases

while increasing the number of superpixels, whereas precision decreases for all values of

the number of superpixels when the minimum segment length is less than 10 pixels or

more than 20 pixels. The reason is that a small segment length results in clusters with

high noise because of selecting a large number of small segments, whereas a large seg-

ment length results in clusters with low evidence because of discarding a large number of

segments. The bottom row of Figure 5.14 shows precision and recall versus the ranking

threshold used to select the high confidence clusters. We obtain similar results for the

recall. It increases while increasing the number of superpixels. For precision, we can see

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance172

that it increases while increasing the number of superpixels as we lower the value of the

ranking threshold. For example, when the ranking threshold is 10%, we can achieve up

to 91% precision at N =150. As the ranking threshold increases, the precision decreases

for most N values. The reason is that adding more clusters to the high confidence set in-

creases the noise encountered when estimating the dominant pair of clusters representing

the road boundary.

5.3 Discussion

The traffic-video datasets used for experimental evaluation show several challenging envi-

ronmental and lighting conditions encountered in real-world traffic scenes. For example,

challenging lighting conditions can be seen in the video sequences recorded from the

Brock Road, Yonge, and Liverpool cameras. The side lane in the Bayview location poses

a challenge in correctly estimating the road boundary. The Highway 127 location is an

example of unlit roads recorded during the night, where the road boundary can be barley

barely recognized using vehicle headlights. The effect of headlight reflections is clear in

the road regions of Bathurst, Bayview, and Whites locations under wet environments.

Avenue location also is a challenging scenario, where the main monitored highway is

occluded by another road. The results confirm that the V4 and V3 methods can detect

road boundaries and handle such challenging conditions.

The precision and recall comparison shown in Table 5.2 confirms that road-activity

features are important in accurately estimating road boundaries. One can see the poor

performance of the V1 and V2 methods that neglect activity cues. The V1 method can

only find stable edges; however, these edges may belong to different scene structures

other than road boundaries. The V2 method performs perspective filtering, yet cannot

identify road regions. The V3 method extends the V2 method by applying activity

ranking and provides a good estimate of road boundaries. The V4 method provides

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance173

comparable accuracy to the V3 method on Dataset 1, at a significantly faster runtime

performance. Both the V3 and V4 methods outperform the CN24 and Gabor methods.

The V4 method achieves its faster runtime performance by applying online (top-

down) hierarchical clustering, which approximates the bottom-up hierarchical-clustering

method used by the V3 method. Online clustering also allows the V4 method to adapt

well to changes in the traffic scene. The V3 method cannot forget old information, and a

new clustering hierarchy should be generated for every 25 frames. A limitation of the V3

method is that it cannot handle changes in camera-viewing directions. Another limitation

of the V3 method is the poor accuracy on segments of traffic-video streams that have

unclear road structures or few activities. This is because the V3 method independently

processes sequences of 25 frames each, so the initial frames of each sequence do not have

enough historical evidence. The V3 method also has high computational time, which

rapidly increases when processing high-resolution images due to the accumulation of a

large number of edges. The V4 method overcomes the limitations of the V3 method using

the fast online hierarchical-clustering algorithm, which smoothly forgets old evidence over

time. One can see that the V4 method provides similar precision and recall accuracy to

the V3 method on Dataset 1 and outperforms the V3 method on Dataset 2.

It is also clear that the Gabor method has poor performance on Dataset 1. This is

because the dataset contains low-resolution images with large noise created by the severe

environmental conditions. This causes a noisy output for Gabor filtering, which was

used by [109] to estimate the road vanishing point and dominant boundary. Thus, the

vanishing point estimate is wrong in most cases, which leads to the poor performance

in [109]. Moreover, CN24 also has poor performance on some sequences of Dataset 1.

CN24 was trained on a road dataset that contains two sets of sequences. The first set

contains clear and visible daylight road regions. The second set contains sequences with

severe lighting conditions that have strong shadows and dark roads simulating night

scenes. Our aim from the comparison against CN24 is to see how robust a deep learning

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance174

model, that is trained on a given road dataset, is to deal with environmental conditions

in another similar dataset. Although fine-tuning the CN24 model on our dataset may

improve its performance, the aim of this work is to develop a method that can deal with

unseen challenging conditions that appear in continuous and possibly infinite traffic video

streams. Figure 5.10 shows that CN24 performed well on some daylight sequences such

as BrockRoad and Liverpool, however it performs poorly on other daylight sequences

such as Whites, Yonge, and DVP. CN24 also has an inaccurate prediction of large re-

gions in Reynolds and Hwy-137. Figure 5.11 shows that CN24 failed in most night

sequences; however, it was able to detect part of the road regions on some sequences

such as Reynolds, Hwy-137, and Montreal. Notice that it is hard to train CN24 on these

sequences because major parts of the road regions are dark. In addition, the strong light

reflections found in locations such as Whites and Yonge roads are also hard to be de-

tected by CN24. The reason is that these regions exactly match lights coming from road

lighting poles and building in non-road areas. Another important problem is that CN24

is trained on individual images while ignoring road activity. This work showed that road

activity is an important clue in detecting road regions. So, a possible future direction is

to extend the CN24 method by incorporating motion information, such as optical flow

maps.

5.4 Concurrent Streaming Implementation

In this section, we express our online road-boundary detection algorithm [81] in the pro-

posed stream algebra. The algorithm receives an input video stream V = {Vi∣i = 0,1,2, ...}.

Then, it applies edge detection on each frame Vi ∈ V by extracting N superpixels from

each Vi and applying polygon approximation. The resulted edges are incrementally added

to a hierarchical-clustering tree by applying an online algorithm that maintains clustered

over a temporal window of interval ∆t. The algorithm generates a sequence of updated

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance175

clustering trees H = {Hi∣i = 0,1,2, ...}. For each tree Hi, the algorithm statistically

ranks the clusters based on the number of edges and variance. Clusters with ranks

larger than a threshold of T are then selected. This generates a ranked cluster stream

C = {Ci∣i = 0,1,2, ...}, where each Ci ∈ C is a list of top-ranked clusters from Hi ∈ H at

time i. For every list Ci, each cluster Ci,j ∈ Ci is mapped to its mean line and generates

the line stream L = {Li∣i = 0,1,2, ...}. The method then performs a Cartesian product

of each set Li ∈ L by itself and eliminates pairs with similar elements. This generates

a pairwise stream P = {Pi∣i = 0,1,2, ...}. After that, the approach applies perspective

filtering on every Pi ∈ P to remove line pairs that do not have their vanishing points

heading upward in the image. This generates the filtered stream of line pairs Q.

After generating the line-pair stream Q, the algorithm ranks every pair in Qi based

on the road activity. This is performed by taking the input stream V and applying back-

ground subtraction to detect moving objects. The centroids of these objects are recorded

over a temporal window of the same interval ∆t used by online hierarchical clustering.

Then, the method attaches the recent list of detected centroids with every line-pair list

Qi ∈ Q to produce the stream U = {Ui∣i = 0,1,2, ...}. Next, activity ranking is applied

on U to construct the ranked pairwise stream J . Finally, the algorithm outputs the

dominant road-boundary stream B = {Bi∣i = 0,1,2, ...}, where Bi = arg maxx∈Ji rank(x)

represents the top-ranked pair from every pairwise list Ji ∈ J .

5.4.1 Description Using Algebra

Now, we describe this vision pipeline using the algebra (Figure 5.15a). The data types

defined by the algorithm are:

Frame ∶ 2DImage; Video ∶ S ⟨Frame⟩ ; Point ∶ R2 Edge ∶ R6; Cluster ∶ R4 × Edge;

RCluster ∶ Cluster ×R

Pair ∶ Edge × Edge; RPair ∶ Pair ×R

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance176

Hierarchy ∶ Tree ⟨Cluster⟩

Params ∶ List ⟨Parameter⟩,

where a Frame is a single 2D image, a Video is a stream of frames, a Point is a

2D vector, and an Edge is a straight line segment (x1, x2, y1, y2, ρ, φ), where (ρ,φ) rep-

resents the edge in polar coordinates. A Cluster is represented in sufficient statistics

(φ̂, ρ̂, n, t, smax), where:

φ̂ = (∑n
i=0 φi,∑n

i=0 φ
2
i) ρ̂ = (∑n

i=0 ρi,∑n
i=0 ρ

2
i),

where n is the number of edges in the cluster, t is the last update time of the cluster,

and smax is the line segment that encloses the projection of all cluster edges on its mean

line. We define RCluster as (c,α), where c ∶ Cluster and α is the statistical rank of c.

A Pair is a pair of edge segments. The RPair is defined as (p, β), where p ∶ Pair, and

β is the activity rank of p. A Hierarchy is a tree of clusters. Finally, Params is a list of

parameters.

We start by copying the incoming video stream V ∈ Video into two streams V ′ and

V1 using a Copy operator:

V ′, V1 ≜ Copy(2)(V). (5.41)

We then apply the Cut operator on V ′ to obtain the streams V2 and V3:

V2, V3 ≜ Cut()(V ′). (5.42)

Note that the three streams V ′, V1, and V2 are all copies of the original stream V with

the same flow rate; however, V3 is a sampled version of V ′ with a decoupled flow rate.

We now process V2, and return later to discuss the use of streams V1 and V3. We

perform superpixel segmentation and contour approximation on every frame in V2 using

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance177

the function f1 ∶ List ⟨Frame⟩ × Params → List ⟨Edge⟩. This function takes a list of

parameters p1 ∶ P that define the number of superpixels N . In addition, f1 and p1 are

used with the Map operator to define the stream E ∶ S ⟨List ⟨Edge⟩⟩:

E ≜Map(d1) ○Map(f1, p1)(V2). (5.43)

The ○ operator is a composition operator that takes the output stream from the right

operand and feeds it as an input stream to the left operand. We use the Map operator as a

viewer to display the output edges using the function d1 ∶X →X (see Figure 5.15b). The

function d1 forwards its input to output while displaying the image content of incoming

elements. We then define the function as follows:

g1 ∶ Hierarchy ×List ⟨Edge⟩ × Params → Hierarchy ×List ⟨Cluster⟩

g1(u,x, p) = { u.add(x); //add edges x to u

y = u.last-touched(); //get last added clusters.

return(u, y) },

which keeps updating a given clustering tree u by adding new edges. Then, a list of

all clusters touched by the added edges are returned as the output y. We define the

parameter vector q1, which contains, for example, the tree height, number of children

per node, etc. The g1 function is used with the Reduce operator to generate the stream

H ∶ S ⟨List ⟨Cluster⟩⟩:

H ≜ Reduce(Empty-Tree, g1, q1)(E). (5.44)

Given the H stream, we apply a ranking function f2 ∶ List ⟨Cluster⟩ ×Params →

List ⟨RCluster⟩ to statistically rank clusters based on the variance and number of sam-

ples. This function together with an empty list of parameters p2 can be used with the

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance178

Map operator to generate the ranked cluster stream F ∶ S ⟨List ⟨RCluster⟩⟩:

F ≜Map(f2, p2)(H). (5.45)

We then apply a threshold function f3 ∶ List ⟨RCluster⟩×Params → List ⟨RCluster⟩ on

every element in F to choose clusters with ranks larger than a threshold T . A parameter

list p3 is defined for the threshold T . The Map operator parametrized by f3 and p3 can

then generate the stream C ∶ S ⟨List ⟨RCluster⟩⟩:

C ≜Map(f3, p3)(F). (5.46)

The stream C is converted to a line stream by applying a function f4 ∶ List ⟨RCluster⟩×

Params→ List ⟨Edge⟩. This function maps every cluster Ci,j ∈ Ci into its mean line. The

function together with an empty list of parameters p4 can be used with the Map operator

to construct the line stream L ∶ S ⟨List ⟨Edge⟩⟩:

L ≜Map(f4, p4)(C). (5.47)

Now, we apply a Cartesian product function f5 ∶ List ⟨Edge⟩ × Params → List ⟨Pair⟩ on

every list Li ∈ L by itself and remove pairs with similar elements. The function is added

to list f5 with empty p5 for use with the Map operator to construct the pairwise stream

P ∶ S ⟨List ⟨Pair⟩⟩:

P ≜Map(f5, p5)(L). (5.48)

After that, we define a filtering function f6 ∶ List ⟨Pair⟩ × Params → List ⟨Pair⟩ that

applies perspective filtering on every pair Pi,j ∈ Pi. This function returns a list that only

contains pairs with vanishing points heading upward in the image. We add this function

to list f6 with an empty list of parameters p6 for use with the Map operator to construct

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance179

the filtered pairwise stream Q ∶ S ⟨List ⟨Pair⟩⟩:

Q ≜Map(f6, p6)(P). (5.49)

Now, we need to perform activity ranking on every pair Qi ∈ Q. To define scene activity,

we use the V3 stream. Remember that the V3 stream is a sampled version of the video

stream V ′, which is itself a copy of the input video stream V . We apply background

subtraction [106] on every frame in V3 to obtain a set of foreground regions. We then

output the centroids of these regions. This is performed using the function f7 ∶ Frame ×

Params → List ⟨Point⟩. This function together with an empty list p3 can be used with

the Map operator to construct the centroid stream O ∶ S ⟨List ⟨Point⟩⟩:

O ≜Map(f7, p7)(V3). (5.50)

We record the extracted centroids over a temporal window with interval △t. Thus, we

define the function

g2 ∶ List ⟨Point⟩ ×List ⟨Point⟩ × Params → List ⟨Point⟩ ×List ⟨Point⟩:

g2(u,x, p) = { for all z ∈ u

if (now() − arrivaltime(z) ≥ p.△ t) then

u = u⊖ z //remove z from u

u = u⊕ x.v //append points x.v to u

return(u,u) }.

This function is added to a list g2 with parameter vector q2 that contains only the △t

parameter. The function is used with the Reduce operator to generate the activity stream

A ∶ S ⟨List ⟨Point⟩⟩:

A ≜ Reduce(Empty-List, g2, q2)(O). (5.51)

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance180

Now that we have the activity stream A, it is synchronized with the filtered pairwise

stream Q using the LeftMult operator. This operator latches on A and generates a

stream U ∶ S ⟨List ⟨Pair⟩ × List ⟨Point⟩⟩:

U ≜ LeftMult()(Q,A). (5.52)

We then apply a ranking function f8 ∶ List ⟨Pair⟩×List ⟨Point⟩×Params→ List ⟨RPair⟩

that ranks every line pair using its attached centroids and generates a list of ranked

pairs. The function, along with an empty list of parameters p8, can be used with the

Map operator to build the ranked pairwise stream J ∶ S ⟨List ⟨RPair⟩⟩:

J ≜Map(f8, p8)(U). (5.53)

The algorithm then applies the function f9 = λx ∶ arg maxy∈x rActivity(y) on every element

of stream J . This function returns the line pair with the maximum activity rank. The f9

function, along with an empty list of parameters p9, can be used with the Map operator

to construct the dominant road-boundary stream B ∶ S ⟨RPair⟩:

B ≜Map(f9, p9)(J). (5.54)

Remember that the V1 stream is a copy of the input stream generated by Equation 5.41.

The Map operator is used as a viewer to display the V1 stream using the function d2 ∶

X →X (see Figure 5.15b). We synchronize the B stream with the V1 video stream using

the LeftMult operator to construct the output stream Y ∶ Frame × RPair:

Y ≜ LeftMult()(V1,B). (5.55)

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance181

Afterwards, we apply the expression:

Ground() ○Map(d3)(Y), (5.56)

first, to view the estimated dominant road boundary on every frame using the drawing

function d3 ∶X →X, then to release the stream resources using the Ground operator.

Throughput versus latency analysis. We study the throughput and latency of

the streaming pipeline of our road boundary detection algorithm. Notice again that

throughput is the inverse of the period which is the slowest operator computation or

communication time in the pipeline (see Section 3.3). Figure 5.15a shows the algebraic

description of this pipeline. We ignore the communication cost between operators because

the pipeline is tested on a single machine with data communicated between operators

using pointers. The boundary detection branch starting with stream V2 and ending with

stream B has a latency of 0.049 seconds and a period of 0.012 seconds, on the low-

resolution images of Dataset 1; whereas for the standard resolution images of Dataset 2,

these numbers are 0.125 and 0.03 seconds, respectively. The activity detection branch

starting with stream V3 and ending with stream A has a latency of 0.013 seconds and

a period of 0.01 seconds on Dataset 1, whereas for Dataset 2, these numbers are 0.032

and 0.025 seconds, respectively. The bottom branch starting with stream V1 and ending

with output stream Y has a latency of 0.002 seconds and a period of 0.001 seconds, on

Dataset 1, whereas for Dataset 2, these numbers are 0.004 and 0.002 seconds, respectively.

Notice that the activity detection branch is decoupled from the other branches. The

boundary detection and the bottom branches are synchronized together by the Copy

operator. So, the overall period and latency are given by the slowest branch, which is

the boundary detection branch in this case. The overall latency and period are 0.049

and 0.012 seconds on Dataset 1, whereas for Dataset 2, these numbers are 0.125 and 0.03

seconds, respectively. If Copy is replaced by Cut with V ′ stream as the asynchronous

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance182

output, then the boundary detection branch is decoupled from the bottom branch. In

this case, the overall latency and period are given by the bottom branch. The overall

latency and period become 0.002 and 0.001 seconds on Dataset 1, whereas for Dataset

2, these numbers are 0.004 and 0.002 seconds, respectively. This study shows that our

algebra can manipulate the data flow rates by either decoupling or synchronizing slower

and faster sections of streaming pipelines.

5.4.2 Implementation

After describing our case study in the stream algebra, we can easily implement it using

our stream-algebra implementation (see Section 3.4). It is a simple one-to-one mapping.

The following Go language code implements the road-boundary detection pipeline of

Figure 5.15a,

1 g := NewGraph("boundary-detection")

2 g.Source(u0, h).Copy(2, "cp")

3 g.Cut("ct")

4 g.Map(f1, p1,"m1").Map(d1).Reduce(u1, g1, q1).Map(f2, p2).Map(f3, p3)

5 .Map(f4, p4).Map(f5, p5).Map(f6, p6, "m1e")

6 g.Map(f7, p7, "m2s").Reduce(u2, g2, q2, "r2e")

7 g.LeftMult("lm3").Map(f8, p8).Map(f9, p9, "m3e")

8 g.Map(d2, "m4")

9 g.LeftMult("lm5").Map(d3).Ground()

10 g.LinkOut("cp","ct","m4")

11 g.LinkOut("ct","m1s","m2s")

12 g.LinkIn("lm3","m1e","r2e")

13 g.LinkIn("lm5","m4","m3e")

14 g.Execute()

We start by creating a new operator graph g on line 1. Then, line 2 defines a pipeline

branch that generates the source of the video stream V using the Source operator. The

Copy operator is then added to copy the V stream into V ′ and V1 streams (see Equa-

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance183

tion 5.41). This operator has the unique name cp We define unique operator names for

the start and end operators of every pipeline branch in Figure 5.15a. These names will

be used later to link all branches together. Line 3 adds the Cut operator defined in Equa-

tion 5.41 to the graph g. Line 4 defines the top branch of Figure 5.15a, which extracts

edges and performs online clustering to generate the set of candidate road-boundary

clusters. Line 5 defines the foreground segmentation branch that contains the Map and

Reduce operators of Equations 5.50 and 5.51, respectively. Line 6 defines a pipeline

branch that starts with the LeftMult operator of Equation 5.52. The output of LeftMult

is then processed using the Map operators of Equations 5.53 and 5.54, respectively. Line

7 then defines the Map operator that views the V1 stream in Figure 5.15a. The output

branch is defined in line 8 and starts with the LeftMult operator of Equation 5.55. This

operator is followed by the Map and Ground operators to implement Equation 5.56.

Lines 9 to 12 links all defined branches together to construct the streaming pipeline of

the road-boundary detection algorithm. Finally, the Execute() function is called in line

13 to run the pipeline.

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance184

Ground Truth V1 V2 V3 V4

BrockRoad

DVP

Liverpool

Reynolds

Avenue

Figure 5.9: A visual comparison between V1, V2, V3 [75], and V4 [81] methods. The
V1 method (Conf.) shows the results of our method using only the cluster confidence
ranking. The V2 method (Conf + Persp) shows the results of using perspective filtering
with cluster confidence ranking. The V3 method [75] uses the incremental bottom-up
clustering approach. Note that V4 has comparable accuracy to the V3 method while
boosting faster runtime performance.

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance185

Ground Truth Gabor [109] CN42 [39] OursV4(top) OursV4(2nd) OursV4(3rd)

BrockRoad

DVP

Hwy-137

Liverpool

Reynolds

Whites

Yonge

Avenue

Figure 5.10: Results of applying ourthe V4 method in eight camera locations from Dataset
1 during the daytime. The results are compared against the Gabor-based method [109]
and the CN24 method [39]. Each camera location has a different daytime lighting con-
dition, with one camera location having an occluded road. The first column shows the
ground truth. The second, third, and fourth columns show the results of [109], [39], and
our method, respectively. Moreover, CN24 classifies the road regions as either road or
non-road, and the road regions are highlighted in red. The last two columns show the
second and third ranked cluster pairs or road boundary.

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance186

Ground Truth Gabor [109] CN42 [39] OursV4(top) OursV4(2nd) OursV4(3rd)

Brock Road

DVP

Hwy-137

Liverpool

Reynolds

Whites

Yonge

Montreal

Figure 5.11: Results of applying our the V4 method in eight camera locations from
Dataset 1 during the nighttime. Ours The results are compared against the Gabor-based
method [109] and the CN24 method [39]. Each camera location has a different nighttime
lighting condition, with one camera location having an occluded road. The first column
shows the ground truth. The second, third, and fourth columns show the results of [109],
[39], and our method, respectively. Moreover, CN24 classifies road regions as either road
or non-road, and the road regions are highlighted in red. The last two columns show the
second and third ranked cluster pairs or road boundary.

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance187

(a) Precision

(b) Recall

(c) Runtime

Figure 5.12: Dataset 1. A comparison of the precision, recall, and runtime of the V4
method [81] against the Gabor filter-based method [109] and the classification method
(CN24) by [39]. The V1 method (Conf.) shows the results of our method using only
the cluster confidence ranking. The V2 method (Conf + Persp) shows the results of
using perspective filtering with cluster confidence ranking. The V3 method [75] uses the
incremental bottom-up incremental clustering approach. Note that V4 has a comparable
accuracy to the V3 method, while boosting faster runtime performance.

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance188

Ground Truth Gabor [109] CN42 [39] V3 [75] OursV4

Figure 5.13: Dataset 2. Results of the proposed technique V4 method [81] in six different
camera-viewing directions of the long video-stream dataset, compared to the Gabor-based
method [109], the deep learning CN24 method [39], and the V3 algorithm [75]. The first
column is the ground truth, and the next three columns show the results from [109], [39],
and [75], respectively. Notice that the classified road regions from [39] are highlighted in
red. The last column is our top-ranked pair.

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance189

Figure 5.14: A sensitivity analysis of our algorithm on Dataset 2. The analysis study
precision and recall against different values of the user-defined parameters and for dif-
ferent values of the number of superpixels N . The top row shows precision and recall
versus the decay rate λ used by online hierarchical clustering. The middle row presents
the accuracy versus the minimum length of segments used for polygon approximation.
The bottom row shows the accuracy versus the ranking threshold used to select the high
confidence clusters after confidence assignment.

Chapter 5. Efficient Computer Vision Functionals: Traffic Surveillance190

Map
E

// Map
E
// Reduce

H
// Map

F
// Map

C
��

Map

O
��

Map

Q

��

Map
Poo Map

Loo

Cut

V3

77
V2

OO

Reduce
A
// LeftMult

U
// Map

J
// Map

B
��

Copy

V ′
OO

V1
// Map

V1
// LeftMult

Y
��

Source

V

OO

Ground Map
Yoo

(a)

(b)

Figure 5.15: Online road-boundary detection algorithm [81] described in the stream
algebra: (a) the workflow graph with arrows showing the flow direction of streams;
(b) displaying windows showing the V1 stream, detected edges in stream E, foreground
objects in stream A, and detected road boundary in stream Y . In (a), letters on arrows
represent stream names and dashed lines indicate decoupled streams. The input stream
video is V , and Y is the output video stream that shows the estimated dominant road
boundary.

Chapter 6

Performance Tuning of Large-Scale

Computer Vision Systems

Parameter tuning is an important problem in computer vision. Most algorithms rely

on parameters to control runtime performance or output accuracy. To find the optimal

parameter settings, we need to perform parameter tuning. This can be performed ei-

ther manually, semi-automatically, [108] or automatically [149, 98, 47]. For a vision

pipeline that contains several chained stream operators, parameter tuning becomes more

challenging. This is because each operator can implement a vision algorithm that has a

different set of parameters. Thus, the parameter space becomes large. In addition, these

parameters need to be continuously updated toward changes in the input vision stream.

Several parameter-tuning algorithms have been proposed in computer vision for solv-

ing specific problems. For example, Kisilev et al. [108] proposed a semi-automatic algo-

rithm that tunes parameters by estimating a preference function that captures user prefer-

ences from pairs of the input and output of algorithms. Their parameter-tuning algorithm

was tested on simulated data and image-denoising applications. Sherrah [149] proposed

another algorithm for continuous real-time parameter tuning of a people-tracking surveil-

lance system. This algorithm works in two phases, an offline learning phase and an online

191

Chapter 6. Performance Tuning of Large-Scale Computer Vision Systems192

tuning phase. In the offline learning phase, the algorithm learns the best set of param-

eters. During the online phase, the algorithm incrementally adapts the parameters in a

continuous fashion to react to changes in input data. Parameter tuning for long-term

tracking was explored by Supancic et al. [98], who proposed an online tracking algorithm

that uses self-paced learning to continuously adapt the parameters of an appearance

model to the tracked object. Chau et al. [47] also studied parameter tuning for tracking

algorithms. They proposed an online technique to tune the parameters of a tracking

algorithm to different scene contexts. This technique follows the same scheme of [149] by

using an offline learning stage to learn the tracker parameters in different contexts. Then,

an online stage continuously examines the tracking quality. If the quality is not good

enough, the algorithm detects the current context and tunes the tracking parameters

using the previously learned values.

The previous parameter-tuning examples are specific to certain algorithms. A com-

puter vision pipeline has several stages, each implementing a different computer vision

algorithm. Take for example, the traffic-analysis pipeline presented in Section 5.4 for

road-boundary detection. The pipeline uses several algorithms that include edge detec-

tion, foreground segmentation, online clustering, statistical ranking, and activity ranking.

Each algorithm has its own parameters, which we set to the selected default parameters.

A traffic-video stream can have distinct environmental and scene contexts, such as day-

time, nighttime, rain, and wind. Using one parameter setting cannot work well in all

contexts. Hence, the vision pipeline is required to have several parameter settings or

configurations and dynamically switch between them.

The developed stream algebra presented in Chapter 3 provides an abstraction suitable

for describing and implementing efficient and scalable online computer vision pipelines.

In Chapters 4 and 5, we presented state-of-the-art computer vision algorithms for solving

two fundamental computer vision problems we presented computer vision algorithms that

provide state-of-the-art speedup versus accuracy tradeoff in solving two fundamental

Chapter 6. Performance Tuning of Large-Scale Computer Vision Systems193

computer vision problems: (1) pixel-labelling problems for stereo vision and optical flow

and (2) automatic road-boundary detection in traffic-video analysis. For every algorithm,

a concurrent streaming pipeline is described and implemented using the stream algebra.

As discussed in Section 3.3, a great advantage of stream algebras in databases is

the ability to apply formal and abstract methods for implementing dynamic execution

plans, applying incremental evaluation, scaling up data processing, and defining common

pipeline optimization and cost models. Sections 3.2.2 and 3.2.2 described examples of

representing iterative optimization and parameter-tuning algorithms using our algebra.

However, the tuning and optimization methods in these examples are not general and

were developed specifically for the algorithms in [47, 105]. In this chapter, we will present

a formal method for adaptive parameter tuning of large-scale computer vision pipelines.

Specifically, this chapter shows that a general optimizer of numerical parameters, such

as the method by [95], can be used with the feedback-control mechanisms of our stream

algebra to provide common online parameter optimization for computer vision pipelines.

Without loss of generality, the streaming pipeline developed for our automatic road-

boundary detection algorithm will be used as a case study.

6.1 Problem Statement

Given a linear computer vision pipeline with a set of operators X = {Xi}ni=1, we assume

that each data-processing operator Xi executes a user-defined function with a set of input

parameters Pi. The parameter settings of the pipeline are defined as θ = ⋃i∈[1,n]Pi, where

θ ∈ Θ and Θ is the parameter configuration space for pipeline X. The processing functions

are defined arbitrarily with no closed-form representation to allow the computation of

gradients to optimize parameters. The functions may also be expensive to compute.

Given these assumptions, we follow the general definition of the algorithm configuration

problem [97, 96] to define the pipeline configuration problem as follows:

Chapter 6. Performance Tuning of Large-Scale Computer Vision Systems194

Definition 6.1.1 (Pipeline configuration problem) Let pipeline X have a distribu-

tion I of input instances and a target performance metric c(θ, π) with θ ∈ Θ and on

instances π ⊂ I. Let f(θ) = Eπ⊂I[c(θ, π)] define the expected performance of pipeline

X using parameter settings θ on instances π drawn from I. The pipeline configuration

problem aims to find the optimal parameter configuration θ̂ = argmaxθ∈Θ{f(θ)}.

Sequential model-based optimization (SMBO) is a popular approach for solving gen-

eral algorithm configuration problems by optimizing expensive blackbox functions [95,

94, 21, 96]. This approach optimizes the target performance function f ∶ Θ → R by

sequentially evaluating samples of the parameter space Θ, while minimizing the num-

ber of samples required to reach the optimal parameter setting. This is performed by

first calculating y = f(θ) values at a set of input data instances to obtain the initial set

D = {(θi, yi)ni=1}, which is referred to as the initial design.

The set D is used to learn a model that defines a probability distribution f over

a continuous range of θ ∈ Θ. The SMBO then iterates in three steps: (1) update the

posterior expectation of f using the learned model for new observed values (θ, y), (2)

build an acquisition or utility function g(θ) that measures how desirable a certain θ is to

maximize f , and (3) select the parameter setting θ̂ = argmaxθ∈Θg(θ) that maximizes the

acquisition function and defines (θ, f(θ)) as a new observed value.

In the SMBO approach, the model follows a Gaussian stochastic process, formed as

a Gaussian process (GP) model. So, f is estimated using a GP model that defines a

Gaussian distribution over functions. The model is first learned using the initial design,

then used to calculate the expected value of the performance function f̄(θ∗) = µ∗ at any

arbitrary θ∗. Following SMBO, we use the learned GP model to select the next sample θo

in the parameter space such that it provides improvement over the optimal setting (f̂ , θ̂) =

argmin(f,θ)∈D{f} seen so far. We can perform this selection by maximizing an acquisition

function, usually selected as the popular expected improvement (EI) function [140]. We

refer the reader to Appendix B for a detailed derivation of the GP model.

Chapter 6. Performance Tuning of Large-Scale Computer Vision Systems195

6.2 Feedback Control Using Time-Bounded Sequen-

tial Parameter Optimization

In this section, we extend the time-bounded sequential parameter optimization (SPO)

algorithm in [95] to tune the parameter settings of different data-processing operators

{X1, ...,Xk} in a general streaming pipeline X = {Xi}ni=1, where {X1, ,Xk} ⊆ X and

k ≤ n (see Figure 6.1a). The data-processing operators include the Map, Reduce, and

Filter operators presented in Section 3.1. Each data-processing operator can receive the

corresponding parameters of its data-processing function and apply them on incoming

inputs. WhenX is a computer vision pipeline, the input stream Iin is a sequence of images

or video frames and the output stream Iout represents the computed results. Given an

input α ∈ Iin and its corresponding computed output result π ∈ Iout, a performance metric

f(θ, π) is defined. This metric describes the quality of a result π ∈ Iout computed by the

data-processing operators with input parameter setting θ.

Iin

// X1
I1

// X2
I2

// ⋯
Ij−1

// Xj
Ij

// ⋯
Ik−1

// Xk
Iout

//

(a)

X1
I1

// X2
I2

// ⋯
Ij−1

// Xj
Ij

// ⋯
Ik−1

// Xk
Iout

// Cut //

R
oo

I ′out

Left-Mult
Im
OO

Reduce
F

oo

Iin

OO

(b)

Figure 6.1: Example of a feedback-control system: a) feedforward streaming pipeline; and
b) single-loop feedback-control system for controlling a set of operators in the streaming
pipeline shown in (a).

A feedback loop is defined using the Cut operator that samples the pipeline output

stream Iout. Each output sample is processed using the Reduce operator, which applies

a time-bounded SPO to produce a feedback stream F that includes the candidate input

parameter settings for the controlled operators (see Figure 6.1b). Using the LeftMult

Chapter 6. Performance Tuning of Large-Scale Computer Vision Systems196

Algorithm 5 Time-bounded SPO

Require: u = (T,XW,Y,N, toggle, θo, tmax, nmax, f), x = (π, θ,∆t)
Ensure: u′ = (T ′,X ′W ′, Y ′,N ′, toggle, θ′o, tmax, nmax, f) and y = θn

1: if x ≠ null then
2: i∗ = GetIndex(x.θ,u.Xu.W);
3: u.Y [i∗] = u.Y [i∗] + u.f(x.π, x.θ);
4: u.N[i∗] = u.N[i∗] + 1;
5: u.T [i∗] = u.T [i∗] + x.∆t;
6: end if
7: u′ = u;
8: S = {i∣u′.T [i] ≤ tmax and N[i] ≤ nmax};
9: if S ≠ Φ then

10: ir = RandomSample(S);
11: θn =XW [ir];
12: else
13: u′ = RemoveWorst(u′);
14: if u′.toggle then
15: M = FitModel(u);
16: θn = SelectConfiguration(M);
17: else
18: θn = RandomSample(Θ);
19: end if
20: u′ = Append(u′, θn);
21: u′.toggle =!u′.toggle;
22: end if
23: y = θn;
24: S′ = {i∣u′.T [i] ≤ tmax and N[i] = nmax};
25: if S′ ≠ Φ then
26: io = argmaxi∈S′(u′.Y ′[i]/u′.N[i]);
27: u′.θ′o =u′.X ′u′.W ′[io];
28: end if

operator, each parameter setting in the feedback stream θ ∈ F is attached to a corre-

sponding input instance α ∈ Iin to produce the merged stream Im of pairs (α, θ). Each

input instance α in the pair (θ,α) ∈ Im is processed by the data-processing operators

using the attached parameter setting θ to produce the output (θ, π) ∈ Iout.

The time-bounded SPO method is defined using Algorithm 5, which extends [95] for

parameter tuning of computer vision pipelines. The algorithm takes as input two vectors

u and x and produces two outputs u′ and y. The vector u keeps track of the algorithm

Chapter 6. Performance Tuning of Large-Scale Computer Vision Systems197

state through sequential runs and is updated and assigned to u′. The input x is a sam-

ple from the pipeline output stream, and the output y is the output parameter setting

that will be applied to the next input instance of the pipeline input stream. The state

vector u has several components. The u.Xu.W , u.Y , and u.N components define the

parameter matrix XW and the computed performance vector y in Equation B.2, where

u.X = [θ1, ..., θn]u.W = [θ1, ..., θn] and yi = Y [i]/N[i] for 1 < i < n. The components

u.tmax and u.nmax define the maximum computational time and the maximum number

of samples allowed for evaluating any parameter setting. In addition, tmax allows us

to ignore early parameter settings resulting in high computational time, whereas nmax

ensures that parameter settings in u.Xu.W are fairly evaluated on a similar number of

samples. The component u.T accumulates the computational time taken for evaluating

parameter settings on input instances. The u.θo component refers to the optimal param-

eter setting found so far and is continuously updated after each call to Algorithm 5. The

u.f component defines the metric function. The u.toggle continuously switches between

two actions: (1) fit a GP model using the updated state u′ and find θ that maximizes

Equation B.12 and (2) randomly sample a new parameter setting from the parameter

space Θ. Notice that the performance of the GP model depends on the initial design. In

order to get a good initial design, usually, a costly initialization is required using Latin

hypercube sampling [127], which is a method for generating random samples of parame-

ter values. By interleaving between random sampling and Bayesian optimization, we can

eliminate the need for a costly initial design [95].

Initially, Algorithm 5 receives a state vector u initialized with a set of n randomly

sampled parameter settings from the parameter space Θ. The algorithm starts by testing

whether there is an input sample x. If so, then the algorithm finds the index i∗ of the

parameter setting x.θ (used to evaluate the output sample x.π) from the state parameter

matrix u.Xu.W . Next, the algorithm calculates the performance of the parameter setting

x.θ using the metric function f . The measured performance value is accumulated on

Chapter 6. Performance Tuning of Large-Scale Computer Vision Systems198

u.Y [i∗], and u.N[i∗] is incremented. In addition, the computational time u.∆t taken by

the pipeline in computing the output x.π is accumulated to u.T [i∗]. After updating the

state u, it is assigned to the output state u′. In Step 8, the algorithm locates the set

S containing all indexes i of parameter settings with accumulated computational times

u′.T [i] ≤ tmax and number of evaluations u′.N[i] ≤ nmax. If the set S is not empty, the

algorithm randomly picks a parameter setting from u.Xu.W and assigns it to output

y for the next evaluation. If S is empty, then all parameter settings in u.Xu.W met

one or both maximum budgets nmax and tmax. In this case, the algorithm executes the

RemoveWorst function that deletes the worst performing parameter setting from state

u. Then, a new parameter setting is either randomly sampled from space Θ or found

from a fitted GP model by maximizing Equation B.12. The u′.toggle variable controls

the decision. The new setting is then added to the state u′ using the append function

and the u′.toggle variable is inverted. Finally, Steps 23 to 26 set the output parameter

setting that will be evaluated next and finds the optimal parameter setting among the

settings that met the maximum number of evaluated samples u.nmax with time budgets

≤ tmax.

6.3 Experimental Results

In this section, we present an experimental evaluation of the time-bounded SPO algo-

rithm, Algorithm 5. For simplicity and without loss of generality, we use the streaming

pipeline of the road-boundary detection algorithm as our case study (see Section 5.4).

6.3.1 Case Study

Figure 6.2 shows the streaming pipeline implementation of the road-boundary detection

algorithm after applying feedback control. A feedback branch is formed by applying the

Cut operator to sample the output stream Y and create the return stream R. This can

Chapter 6. Performance Tuning of Large-Scale Computer Vision Systems199

Map
E

// Map
E

// reduce
H

// Map
F

// Map

C
��

Map

O
��

Map

Q

��

Map
Poo Map

Loo

Cut

V3

77
V2

OO

Reduce
A
// LeftMult

U
// Map

J
// Map

B
��

Copy

V ′
OO

V1
// Map

V1
// LeftMult

Y

��
LeftMult

V

OO

Reduce
Foo Cut

Roo

Y
��

Source

I

OO

Ground Map
Yoo

(a)

Figure 6.2: Online road-boundary detection algorithm [81] described in the stream alge-
bra. Arrows show the flow direction of streams and letters on arrows represent stream
names. Dashed lines indicate decoupled streams. The input video stream is I, and Y is
the output video stream that shows the estimated dominant road boundary. A feedback
loop samples the output stream Y into the return stream R using the Cut operator. This
stream is processed using the Reduce operator that executes the time-bounded SPO al-
gorithm and outputs a stream of parameter F . The LeftMult operator then latches on
the F stream and attaches a parameter setting to every incoming input instance.

be described using the following equation:

R,Y ≜ Cut()(Y). (6.1)

The stream R is then used as input to the Reduce operator that executes the function

gspo ∶ U × X → U × Y . This function applies Algorithm 5 for sequential parameter

optimization. The Reduce operator is initialized with a state vector u0 ∈ U that has a

set of initial parameter settings sampled from the parameter space Θ (also called the

initial design). The operator produces the feedback stream F that contains candidate

Chapter 6. Performance Tuning of Large-Scale Computer Vision Systems200

parameter settings, using the equation:

F ≜ Reduce(u0, g)(R). (6.2)

The LeftMult operator then latches on the R stream and attaches a parameter setting

proposal to every incoming instance in the input stream I:

V ≜ Left-Mult()(F, I). (6.3)

For the road-boundary detection algorithm, the following numerical parameter vector is

identified: θ = (N,L,λ, T, ε), where N is the number of superpixels, L is the line segment

length used in the polygon approximation step, λ is the decay rate of online clustering, T

is the ranking threshold used to select the top-ranked clusters after confidence assignment,

and finally ε is the parameter used in Equation 5.15 for calculating cluster confidence.

Each parameter has a range of values defined by a lower and upper limit. The limits

define the parameter space Θ and are specified as follows: N ∈ [25,150]; L ∈ [5,30];

λ ∈ [0.1,0.6]; T ∈ [0.1,0.6]; and ε ∈ [5 × 10−3,5 × 10−2].

6.3.2 Experimental Evaluation

In Section 5.2, we showed the results of the online road-boundary detection algorithm

on two datasets. Dataset 1 contains 50 short low-resolution video sequences collected

from 14 different camera locations at a resolution of 320 × 240. Dataset 2 is a single

long video sequence of 1,627 frames recorded at 704 × 480 resolution and has the camera

changing its viewing directions to focus on different regions in the traffic scene. All results

were computed using the following parameter vector θ = (100,10,0.2,0.2,0.005). This

vector was found by creating a grid that divides the range of each parameter into five

intervals (using the limits defined in the previous section) and randomly selecting a set

Chapter 6. Performance Tuning of Large-Scale Computer Vision Systems201

=

Figure 6.3: Using the time-bounded sequential parameter optimization (SPO) algorithm
to select parameter settings that maximize precision and recall measures on the training
dataset. At each time step, we record the precision and recall of the optimal parameter
setting found so far.

of 50 parameter settings from the grid. A manual search is applied to select the setting

vector that results in the best accuracy.

To evaluate the effectiveness of the time-bounded SPO algorithm in tuning the pa-

rameters of the case study, we compare the quality of the best parameter setting found

using Algorithm 5 to the one selected by manual search. The comparison is performed on

the long video stream of Dataset 2, where the first 814 frames of the dataset are used for

training the GP model, and the remaining 813 frames are used for testing. The quality

measure for a parameter setting θ is defined as follows:

Q(θ) =
n

∑
i=1

δθi(Pθi +Rθi)
2n

, (6.4)

where n = 814 is the number of training frames, δθi ∈ (0,1) is a Boolean determining

whether or not frame i was used to evaluate the setting θ. In addition, Pθi and Rθi are

the precision and recall computed for frame i using the parameter setting θ.

Figure 6.3 shows the performance curves of the time-bounded SPO algorithm in se-

lecting the best parameter settings over time and on the training dataset. Figure 6.3(left)

shows the measured recall value of every best parameter setting found over time. Fig-

ure 6.3(right) shows a similar plot for precision values. The SPO algorithm is executed

Chapter 6. Performance Tuning of Large-Scale Computer Vision Systems202

Methods Precision Recall Average Runtime (seconds)

V4 + SPO (Testing) 92%±20% 72%±19% 0.13
V4 + SPO (Training) 93%±18% 73%±16% 0.13

Table 6.1: Comparing the results of the V4 [81] method with the sequential parameter
optimization algorithm on both the training and testing datasets. The figure shows the
mean and standard deviation statistics for both precision and recall. The last column
shows the average runtime in seconds.

Methods Precision Recall Average Runtime (seconds)

V4 + SPO (Testing) 92.5%±2019% 72.5%±1917.5% 0.13

V4 [81] 90%±11% 71%±20% 0.13
V3 [75] 47%±33% 76%±22% 200
Gabor [109] 78%±14% 43%±12% 54.9
CN24 [39] 64%±26% 49%±43% 81.5

Table 6.2: Comparing the results of the V4 [81] method before and after applying the
sequential parameter optimization algorithm on Dataset 2 and using the mean and stan-
dard deviation statistics for both precision and recall. The V3 [75], Gabor [109], and
CN24 [39] methods are also included in the comparison. The last columns show average
runtime in seconds for each method.

for 11 minutes. It took around 2 minutes to converge to an optimal parameter setting

with precision of 93% and a recall of 73%. The tuning algorithm then selected parameter

settings with nearly similar performance for the remaining time.

Table 6.1 shows results of V4+SPO method on both the training and testing datasets.

Table 6.2 compares the results of the V4 [81], V3 [75], Gabor [109], and CN24 [39] methods

to that of the V4 + SPO method. The results of V4 + SPO are reported on the testing

dataset. All results are reported on the entire images of Dataset 2. These results show

that both the precision and recall of the V4 method are improved using the time-bounded

SPO algorithm. The V4 + SPO pipelined method achieves an average precision of 92%

and an average recall of 72%, whereas the V4 pipelined method achieves 90% and 71%,

respectively. The runtime is the same for V4+SPO as in the V4 method. This is because

the feedback loop defined by the pipeline of V4+SPO uses the Cut operator for sampling

the output stream, which decouples the output stream from the feedback stream.

Chapter 6. Performance Tuning of Large-Scale Computer Vision Systems203

6.3.3 Discussion

Experimental results showed the ability of our stream algebra to naturally describe feed-

back control and to implement a general parameter optimization algorithm for perfor-

mance tuning of streaming computer vision pipelines. The case study showed that the

algebraic feedback-control primitives can be combined with the time-bounded SPO algo-

rithm to tune numerical parameters of pipelined computer vision functions.

The case study focused on tuning the streaming pipeline (see Figure 6.2) for the

road-boundary detection algorithm on a single-input stream. However, we can scale up

the algorithm to process several streams by creating multiple instances of the streaming

pipeline, one for each stream. In this case, the visual content of each stream will guide

the parameter optimization of the dedicated processing pipeline of the stream. Thus,

learning a different parameter setting for each stream, which is adapted to the lighting,

structure, and environmental conditions presented in the stream. However, this requires

obtaining a training dataset for each stream. These datasets can be obtained using a

human operator that labels the road boundaries in one or more sequences of stream

images.

Moreover, a possible future direction is to apply unsupervised learning. This can be

performed by developing a quality measure that doesn’t depend on a training dataset. For

example, the method of [137] extends our approach for road boundary detection to handle

non-linear road geometry. This method develops a quality function for road-boundary

based on the idea that features of road regions are different than other image regions.

Hence, the best road boundary should have its covered road area most distant from other

image areas. Given a road boundary defined by a cluster pair (c, c′), the method defines

the dissimilarity between the road and non-road regions using Bhattacharyya distance,

B(c, c′) =

¿
ÁÁÀ1 −

k

∑
s=1

H in(s)Hout(s). (6.5)

Chapter 6. Performance Tuning of Large-Scale Computer Vision Systems204

Here, H in and Hout are the normalized colour histogram for area bounded by (c, c′) and

the outside area respectively. k is the number of bins. Notice that the Bhattacharyya

distance measures the dissimilarity of two distributions or samples. Generally, it approx-

imates the amount of overlap between two samples or populations. More the overlap,

lower the distance.

Equation 6.5 may be used to define a heuristic for the quality measure suitable for

unsupervised learning of parameter settings. For example, the best parameter setting

should generate road boundaries that maximize equation 6.5. Hence, the quality measure

for a certain parameter setting may be defined as,

Q(θ) =
n

∑
i=1

(Bθi)
n

. (6.6)

n is the number of frames used for evaluating the parameter setting θ. Q(θ) then calcu-

lates for each parameter setting θ, the running average of the dissimilarity between the

road and non-road regions, on frames i used for evaluating θ. As a future work, we will be

studying quality measures similar to the one defined by equation 6.6 that we think may

allow applying unsupervised learning for performance tuning of computer vision systems.

The time-bounded SPO algorithm, Algorithm 5, is applied in the case study as an

offline learning approach. In this case, the algorithm finds the optimal parameter setting

using the given training and testing datasets. Then, the optimal parameters are used as

the default setting for future stream processing. However, online learning is also possible

using partially labelled data, where a human operator can manually label some segments

of the input stream. These segments can be then used to further optimize and adapt

pipeline parameters against previously unseen environmental changes in the traffic scene.

Although the case study applied Algorithm 5 [95] for parameter tuning, several other

model-based [101, 94, 21, 96] and model-free [2, 32, 31, 97, 96, 9] parameter-tuning

algorithms can also be applied. The racing algorithm [32], for example, can be used if

Chapter 6. Performance Tuning of Large-Scale Computer Vision Systems205

I0
// X1

I1

// ⋯
Ij−1

// Left-Mult
I ′j−1

// Xj
Ij

// ⋯
Ik−1

// Xk
Ik

// Cut //

R��

I ′k

Merge
F

OO

Reduce1
oo Copy

R1

oo

R2

ooReduce2

OO

Figure 6.4: Example of applying the idea of boosting to merge the output of two different
parameter-tuning algorithms and select the best performing parameter setting.

a list of candidate settings can be predetermined. The best setting can be selected by

iteratively evaluating each candidate setting on a stream of input instances. The method

of [93] can be used to optimize categorical parameters using decision tree models. Such

methods can be applied by replacing the processing function g in Equation 6.2 that

parametrizes the Reduce operator of the feedback loop.

Moreover, the feedback-control loop presented in the case study can be extended to

multi-loop feedback control (see Figure 3.1) for scaling up parameter optimization. In

this case, each feedback loop can have the Reduce operator, applying similar or different

parameter-tuning methods. By treating these methods as weak learners for estimating the

performance response surface of the quality metric (see Equation 6.4), we can apply the

idea of boosting from machine learning [190]. Boosting combines a set of weak learners

to produce a single strong learner. Assuming m weak learners, the Merge operator

(see Figure 6.4) can find the best parameter setting θ∗ from the output estimates π =

{θ1, ..., θm} of weak learners by applying the select function θ∗ = argmaxθ∈π{Q(θ)}. Here,

each learner produces a pair (θ,Q(θ)).

The case study, experimental results, and discussion show the effectiveness of using our

stream algebra for general parameter tuning of the computer vision pipeline. We think

that the ability of our stream algebra to flexibly apply and scale up parameter tuning

will open several future opportunities in building and optimizing large-scale streaming

computer vision systems.

Chapter 7

Conclusion

7.1 Summary of Contributions

In this work, we addressed existing challenges in building large-scale computer vision

systems processing image and video streams. These challenges include the lack of formal

and scalable frameworks for building and optimizing streaming computer vision pipelines.

Additionally, many existing computer vision algorithms are computationally expensive

and cannot efficiently scale up for processing large-scale data. As a step toward in

overcoming these challenges, we presented formal methods for building scalable computer

vision systems.

First, we described a stream-algebra framework for mathematically expressing com-

puter vision pipelines (online vision systems that process image and video streams). The

algebra defines an abstract set of concurrent operators with formal semantics that manip-

ulate image and video streams. The algebra provides operators for both data processing

and rate control. The data-processing operators perform data transformations on input

image and video streams, whereas the rate-control operators allow decoupling and syn-

chronization between the data-flow rates of different computer vision pipelines, thus sup-

porting seamless integration between different computer vision tasks to build large-scale

206

Chapter 7. Conclusion 207

systems. The algebra also can naturally express feedback-control loops. We presented an

algebraic description that can express both single-loop and multi-loop feedback control

in computer vision pipelines, thus enabling optimization tasks, such as parameter tun-

ing and iterative optimization. We showed the effectiveness of the algebra in describing

several state-of-the-art techniques in computer vision.

We also developed new computer vision algorithms for efficiently processing image and

video streams in the areas of pixel-labelling problems and automatic visual surveillance.

For pixel-labelling problems, we developed the sparse cost-volume filtering approach for

solving the problems of stereo vision and large-displacement optical-flow estimation. The

approach leverages sparse processing of cost volume, which can be tuned to trade-off

speed versus accuracy by controlling sparsity. We presented two methods for comput-

ing the sparse sub-volumes: a feature-based method the applies keypoint matching and a

segmentation-based method that relies on superpixel segmentation and nearest-neighbour

fields. While the feature-based method is unable to scale up for large cost-volume process-

ing, the segmentation-based method is linear in the image space and can be scaled up to

process large cost volumes. Both methods have been shown to outperform several state-

of-the-art methods in stereo vision and optical flow. The segmentation-based method was

also expressed in our stream algebra and implemented as a multi-GPU streaming pipeline

that can be scaled up to process multiple video streams. For automatic visual surveil-

lance, we developed an online method for automatic lane and road-boundary detection in

traffic videos recorded by uncalibrated cameras typically mounted along highways. The

method can process traffic-video streams in real time. It also can detect roads under

severe environmental conditions and when the camera is re-positioned or has its view-

ing direction changed. The algorithm is expressed in our algebra and implemented as a

concurrent streaming pipeline.

Finally, we showed that the feedback-control definitions of our stream algebra can

implement a general parameter optimization algorithm for parameter tuning of stream-

Chapter 7. Conclusion 208

ing computer vision pipelines. We used the streaming pipeline of the automatic road-

boundary detection as a case study. Experimental results showed the effectiveness of

combining the feedback-control primitives of our algebra with a general sequential pa-

rameter optimization algorithm as a common optimization method for parameter tuning

in large-scale streaming pipelines.

7.2 Future Directions

Our work made several material contributions but also suggests several directions for

future research in building efficient and scalable computer vision algorithms and systems.

Efficient computer vision algorithms. Although we developed efficient algo-

rithms for stereo vision, optical flow, and automatic road-boundary detection, there is

still considerable room for improving the accuracy and speed of these algorithms for pro-

cessing image and video streams. Our sparse cost-volume filtering approach can trade

off accuracy versus speed or vice versa by controlling sparsity. In the future, we aim to

study this feature, which allows tuning the algorithm performance based on the speed

and complexity of incoming video streams. We will also apply the algorithm on other

pixel-labelling problems, which include multi-label segmentation, co-segmentation, and

scene labelling. We think that the accuracy and speed of sub-volume cost filtering can

be improved further by integration with deep learning that can estimate costs in pixel-

labelling problems. Indeed, convolutional neural networks (CNN) have been recently

trained for the task of patch matching in optical flow and stereo vision [16, 166]. They

provide promising results on benchmarks. Currently, we are building on this work to

further boost the accuracy and performance of our sparse cost-volume filtering approach.

We are also planning to study the various applications of our road-boundary detection

algorithm in traffic video analysis, which includes detection of excessive speeding, careless

driving, and accidents.

Chapter 7. Conclusion 209

Web-scale computer vision. Our stream-algebra framework provides the means

to build large-scale computer vision systems capable of processing large volumes of image

and video streams. We think that the algebra is a step forward in building web-scale

computer vision systems. In the future, we aim to study and build large-scale computer

vision systems that process, align, and understand video and photo streams that are

publicly available via photo sharing services and websites. This direction is aligned with

the current race of developing scalable computer vision algorithms capable of real-time

processing of vast amounts of image and video streams. The winning algorithms in

this race will not only be accurate but also capable of efficiently dealing with the scale,

variation and growing nature of image and video streams. Today, for example, everyone

can simply hold up his phone and capture live streams of actions and personal moments.

Smart home and traffic surveillance cameras are rapidly increasing in numbers. We can

also see the fast development of swarms of flying machines or micro-quadcopters that can

be equipped with cameras. This motivates the need to develop efficient frameworks that

can easily and seamlessly integrate the different services, algorithms, and components

required to build large scale computer vision systems.

Execution plan optimization and performance tuning. Our stream algebra

provides the ability to define different execution plans for the computer vision pipeline.

For example, we can merge a sequence of Map and Reduce operators in a pipeline using

the function composition. A runtime optimizer can then select and switch between

different plans to provide load balancing, maximize performance, and reduce latencies

required to move data between concurrent stream-processing operators. As a preliminary

study, we applied simple load balancing techniques on the linear branches of the traffic

surveillance pipeline [138]. For each branch, the target is to partition the branch into a set

of intervals whose execution times are well balanced. The execution time of each interval

is the sum of processing times of operators in the interval. The number of intervals is

an input parameter and usually set to the number of available processor cores allocated

Chapter 7. Conclusion 210

to execute the branch. The Map and Reduce operators in each interval are merged

together and executed on a single core. As a future direction, we aim to build a runtime

optimizer capable of performing throughput versus latency optimization of computer

vision pipelines. We are envisioning that with a set of benchmarks of a given computer

vision system, the optimizer can suggest the best execution plans for different target

environments and help in estimating the required computational resources at different

data scales. At runtime, the optimizer will continuously monitor a computer vision

system to guarantee optimal execution plan. It will also dynamically identify and resolve

bottlenecks by applying parallel execution patterns. Thus resulting in big savings in

energy and computational resources that could be wasted by poor assignment of tasks.

Dynamic reconfiguration. Our algebra opens a new research direction in enabling

dynamic reconfiguration in large-scale computer vision pipelines. This is enabled by

the ability of every data-processing operator to receive a list of functions as input. The

runtime can later decide to dynamically switch between these functions to match changes

in the content and speed of incoming streams. The decision can be performed using the

feedback-control mechanisms of the stream algebra. One interesting future direction is

to build an optimizer that dynamically reconfigures the data-processing operators to

maintain a predefined level of quality of service. This is by treating functions as system

parameters that can be tuned using parameter tuning algorithms. Take for example a

Map operator that performs optical flow, one can simply use the top-ranked algorithm

on benchmarks as the mapping function. A closer look at the results of the different

algorithms on benchmarks can show that some algorithms have better accuracy and

speed than others on specific datasets. Thus allowing the Map operator to receive a list

of algorithms enables a computer vision system to dynamically configure the operator to

optimize accuracy and speed against changes in input data. We believe that a key factor

in building successful large-scale computer vision systems is to give them capabilities of

self-configuration and self-optimization.

Chapter 7. Conclusion 211

Feedback control. The ability of algebra to naturally express feedback control al-

lows efficient description and implementation of several optimization tasks for tuning the

performance of large-scale computer vision pipelines. We aim to study computer vision

pipelines with multi-loop feedback control that perform feedback control tasks such as

parameter tuning, incremental learning, and iterative optimization. These are important

tasks in computer vision. Incremental learning, for example, has been recently used to

improve the performance of object detection and tracking. This is performed by using

top-ranked detections as new inputs to continuously adapt learned models and incre-

mentally learn model parameters. Iterative optimization is also a fundamental operation

in several computer vision tasks such as image segmentation, stereo vision, and human

pose estimation. The feedback primitives of the stream algebra not only allow efficient

implementation of these tasks but also can scale them up for big visual data processing.

Pipeline instrumentation. The stream algebra also opens a new direction in in-

strumentation of computer vision pipelines. This allows us to define methods to debug

and monitor pipeline accuracy and performance. The current popular debugging mech-

anisms include log files and dashboards, however there is nothing better than inserting

a probe at any vision steam in a large scale system and getting a visual view. The Cut

operator, for example, can be inserted dynamically to sample any stream in the pipeline.

The sampled stream can be later used as input to complex visualization and monitor-

ing methods. Because the sampled stream has a decoupled data-flow rate, the pipeline

data-flow rate will not be affected by the complexity of monitoring methods. We are

also planning to implement algorithms that detect failures such as outputs with poor

accuracy or inputs causing unpredictable performance and provide the ability to trace

operators and visualize streams responsible for these failures.

Stream-algebra distributed implementation. Our stream algebra has been im-

plemented in the Go language. The current implementation can scale up processing on

multicore CPU and GPU systems. The algebra also inspired the development of several

Chapter 7. Conclusion 212

tools and frameworks such as ReactiveX 1, which is an API for asynchronous program-

ming with more than 150 streaming operators. All these operators can be implemented

using the 14 operators of our stream algebra. Moreover, pipelines implemented by Reac-

tiveX are single threaded by default and require developers to plan multi-threading them-

selves. Currently, we are working to implement our stream algebra in Apache Kafka [10]

to enable building scalable computer vision pipelines on large computing clusters. We

aim to have a programming platform where a developer or researcher can express his

computer vision system using our stream algebra and later compile the system to differ-

ent target computing environments that include single-core systems, multi-core systems

or large computing clusters.

1ReactiveX: http://reactivex.io/ (last accessed on 7 March 2018).

Appendix A

Supplementary Materials For the

Sparse Cost-volume Filtering

Approach

The central claim of our work is that the SVF and ACF methods achieve accuracy that is

comparable to other schemes for computing optical flow and stereo vision while providing

faster runtimes than other techniques. This appendix provides additional results and

comparisons of SVF against existing published optical flow estimation techniques on

Middlebury, MPI Sintel, and KITTI optical flow benchmarks. It also shows results of

ACF on Middlebury standard stereo benchmark and 2005/2006 high-resolution stereo

datasets. The results support our assertion.

Middlebury Benchmark

Tables A.1 and A.2 list results of SVF+OH on the Middlebury benchmark. Table A.1

presents ranking based on the average End-Point Error (EPE); whereas, Table A.2

presents ranking based on the average Angle Error (AE).

213

Appendix A. Supplementary Materials For the Sparse Cost-volume Filtering Approach214

We perform several additional experiments for testing the performance on the Middle-

bury optical flow training datasets. Figure A.3 demonstrates the convergence of SVF+OH

for 10 PatchMatch iterations (baseline set to 7). Figure A.3a shows average End-Point

Error (EPE) versus filtering time, and Figure A.3b shows average Angle Error (AE)

versus filtering time. Figure A.4 shows a comparison of filtering time between our SVF

method and PatchMatch Filter [122].

Figure A.5 presents the optical flow estimation results of SVF+OH on Middlebury

testing datasets using the proposed method.

Figure A.1 and A.2 present the stereo estimation results of ACF+OH on Middlebury

standard stereo benchmark and 2005/2006 high resolution stereo datasets, respectively.

MPI Sintel Benchmark

Tables A.3 and A.4 list results of SVF+OH on MPI Sintel clean and final datasets.

We are ranked 21 on the clean pass and 22 on the final pass, out of current standard

published work. Notice that the proposed method only takes a fraction of the time of

the state-of-the-art methods.

Figures A.6 and A.7 show the computed optical flow on MPI Sintel clean and final

datasets, respectively.

KITTI Benchmark

Tables A.5 lists the results of SVF+OH on the KITTI benchmark. The table is ranked

by the percentage of erroneous pixels in non-occluded areas (Out-Noc). Our method

achieves an average EPE of 9.1 on all image regions (Avg. All).

Appendix A. Supplementary Materials For the Sparse Cost-volume Filtering Approach215

Table A.1: Middlebury benchmark evaluation results ranked by the average End-Point
Error (EPE) (recorded on January 24th, 2017). Our method is highlighted by a red box.
The table lists top-ranked methods.

Appendix A. Supplementary Materials For the Sparse Cost-volume Filtering Approach216

Table A.2: Middlebury benchmark evaluation results ranked by the average Angle Error
(EPE) (recorded on January 24th, 2017). Our method is highlighted by a red box.

Appendix A. Supplementary Materials For the Sparse Cost-volume Filtering Approach217

Table A.3: MPI Sintel benchmark evaluation results ranked by the average End-Point
Error (EPE all) on the clean pass (recorded on January 24th, 2017). Our SVF+OH
method is highlighted by a red box. The table lists the top-20 ranked methods.

Appendix A. Supplementary Materials For the Sparse Cost-volume Filtering Approach218

Table A.4: MPI Sintel benchmark evaluation results ranked by the average End-Point
Error (EPE all) on the final pass (recorded on January 24th, 2017). Our SVF+OH
method is highlighted by a red box. The table lists top-20 ranked methods.

Appendix A. Supplementary Materials For the Sparse Cost-volume Filtering Approach219

Table A.5: KITTI benchmark evaluation results ranked by percentage of erroneous pix-
els in non-occluded areas (Out-Noc) (recorded on January 24th, 2017). Our SVF+OH
method is highlighted by a red box.

Appendix A. Supplementary Materials For the Sparse Cost-volume Filtering Approach220

MPI Sintel time (seconds)
FlowNetS+ft+v 1.05‡

FlowNetC+ft+v 1.12‡

SVF+OH 1.95‡

PCA-Layers 3.2
PMF 5.3‡

SParseFlow 10
EpicFlow 16.4
FlowFields 18
DeepFlow 19
SparseFlowFused 20
Deep+R 142.8
DiscreteFlow 180
NNF-Local 673+†

TF+OFM 600+†

PH-Flow 800+†

PatchWMF-OF 520
AggregFlow 1642+†

S2D-Matching 1920

Middlebury time (seconds)
SVF+OH 1.56‡

PMF 4.12‡

DeepFlow 13
FlowFields 15
EpicFlow 16
CostFilter 55
ALD-Flow 61
IROF++ 187
MDP-Flow2 342
NN-field 362
LME 476
TF+OFM 600
NNF-Local 673+†

PH-Flow 800+†

S2D-Matching 1200
AggregFlow 1642
TC-Flow 2500
nLayers 36150

†Methods reports runtime on standard images (640 × 480). This runtime will increase when processing MPI Sintel images

(1024 × 436). ‡Runtime is reported on a single GPU. Note that the overall runtime of our method drops to 0.5 seconds
(MPI Sintel) when using 4 GPUs.

Table A.6: The runtime of our SVF+OH method compared to the top-ranked methods
on the MPI Sintel and Middlebury benchmarks. Our method is highlighted by red. MPI
Sintel benchmark does not report runtimes, so runtimes for other methods are collected
from the corresponding papers and other benchmarks. Note also that not all runtimes
are for GPUs. FlowNetS+ft+v, FlowNetC+ft+v, DeepFlow and EpicFlow methods
have very poor accuracy on Middlebury benchmark and do not fall into the top-ranked
methods (See Table A.1 and A.2). Our method is the fastest among the top-ranked
methods in the Middlebury benchmark.

Additional Results

Table A.6 shows the runtime of our SVF+OH method compared to the top-ranked

methods on the MPI Sintel and Middlebury benchmarks. Notice that, FlowNetS+ft+v,

FlowNetC+ft+v, DeepFlow and EpicFlow methods have very poor accuracy on Middle-

bury benchmark and do not fall into the top-ranked methods (See Table A.1 and A.2).

Appendix A. Supplementary Materials For the Sparse Cost-volume Filtering Approach221

Frame 1 Frame 2 Ground Truth ACF+OH

Figure A.1: Results of our ACF+OH method on the four datasets of Middlebury standard
stereo benchmark.

Appendix A. Supplementary Materials For the Sparse Cost-volume Filtering Approach222

Frame 1 Frame 2 Ground Truth ACF+OH

Figure A.2: Results of our ACF+OH method on the Books, Moebius,Dolls, Rocks 1, and
Rocks 2 high-resolution Middlebury 2005/2006 stereo datasets.

Appendix A. Supplementary Materials For the Sparse Cost-volume Filtering Approach223

(a) Average End-Point Error (EPE) versus filtering time for the Middlebury training datasets

(b) Average Angle Error (AE) versus filtering time for the Middlebury training datasets

Figure A.3: The convergence for 10 PatchMatch iterations (baseline is 7) of our SVF+OH
method on the Middlebury training datasets.

Figure A.4: A comparison of filtering time between our SVF method and PMF. SVF
grows linearly and PMF exponentially.

Appendix A. Supplementary Materials For the Sparse Cost-volume Filtering Approach224

Frame 1 Frame 2 Ground truth Initial flow Our result

Figure A.5: Example results on the Middlebury optical flow testing benchmark for our
SVF+OH method. Note that the initial flow is computed in about 0.2 seconds using the
method in [123].

Appendix A. Supplementary Materials For the Sparse Cost-volume Filtering Approach225

Frame 1 Frame 2 Ground truth Initial flow Our result

Figure A.6: Example results on the clean pass of the MPI Sintel benchmark for our
SVF+OH method. Note that the initial flow is computed in about 0.25 seconds using
the method in [123].

Appendix A. Supplementary Materials For the Sparse Cost-volume Filtering Approach226

Frame 1 Frame 2 Ground truth Initial flow Our result

Figure A.7: Example results on the final pass of the MPI Sintel benchmark for our
SVF+OH method. Note that the initial flow is computed in about 0.25 seconds using
the method in [123].

Appendix B

Gaussian-Process Regression

In the SMBO approach of chapter 6, the model follows a Gaussian stochastic process,

formed as a Gaussian process (GP) model. We start by having the input training points

D = {(θi, yi), i = 1, , n}, where yi = f(θi) is the value of the performance metric function

for an algorithm or pipeline at the parameter setting θi. We assume that the yi values

are noisy samples and define y as a normally distributed random variable with noise ε:

y = f(θ) + ε, ε = N (0, σ2
y). (B.1)

We assume a prior distribution on f that is defined using a GP model, where a GP

is a Gaussian distribution over functions. The GP in this case is described by a mean

function m(θ) and a covariance function k(θ, θ′). Given the set D, we assume that the

performance response surface y = [y1, , yn] is described by a GP given by the multivariate

distribution:

y ∼ N (m(X),K + σ2
yI), (B.2)

where X = [θ1, ..., θn] and m(X) = [m(θ1), ,m(θn)] and K is an n×n matrix with entries

[K]i,j = k(θi, θj), and I is the identity matrix. As in [95], we assume a zero mean GP,

where m(X) = 0. The similarity kernel k ∶ Θ×Θ→ R+ is chosen to measure the similarity

227

Appendix B. Gaussian-Process Regression 228

between any two different parameter settings {θ, θ′} ⊂ Θ. A popular choice of the kernel

is the squared exponential covariance function [140], which is defined as:

k(θi, θj) = σ2
fexp(

d

∑
k=1

((θik − θjk)2

2l2k
)) , (B.3)

where σf and l1, ..., ld are kernel parameters defined for parameter settings with d dimen-

sions. The marginal likelihood p(y∣X) is given by:

p(y∣X) = ∫ p(y∣f,X)p(f ∣X) df, (B.4)

p(f ∣X) = N (0,K), (B.5)

p(y∣f,X) = p(y∣f) =
n

∏
i=1

N (yi∣fi, σ2
y). (B.6)

This results in p(y∣X) = N (y∣0,Ky), where Ky = K + σ2
yI. The kernel parameters

[σy, σf , l1, ..., ld] can be learned in closed form by maximizing the log marginal likelihood

log p(y∣X) (see [140] for derivations).

Given an arbitrary unseen parameter setting θ∗ and using the learned GP model, we

can form the joint distribution:

⎡⎢⎢⎢⎢⎢⎢⎣

y

y∗

⎤⎥⎥⎥⎥⎥⎥⎦
∼ N

⎛
⎜⎜
⎝

0,

⎡⎢⎢⎢⎢⎢⎢⎣

Ky K∗

KT
∗ K∗∗

⎤⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
, (B.7)

where K∗∗ = k(θ∗, θ∗) and K∗ = [k(θ∗, θ1), ..., k(θ∗, θn)]. Using conditional normal distri-

butions, a predictive distribution p(y∗∣θ∗,X, y) can be calculated as:

p(y∗∣θ∗,X, y) = N (y∗∣µ∗,Σ∗), (B.8)

µ∗ =KT
∗K

−1
y y, (B.9)

Σ∗ =K∗∗ −KT
∗K

−1
y K∗. (B.10)

Appendix B. Gaussian-Process Regression 229

Thus, we can use the GP model to calculate the expected value of the performance

function f̄(θ∗) = µ∗ at any arbitrary θ∗. Following SMBO, we use the learned GP model

to select the next sample θo in the parameter space such that it provides improvement over

the optimal setting (f̂ , θ̂) = argmin(f,θ)∈D{f} seen so far. We can perform this selection by

maximizing an acquisition function. This function describes the desirability or utility of

each parameter setting θ ∈ Θ in maximizing the target performance of the metric function

f(θ). Although several acquisition functions have been proposed in the literature, the

expected improvement (EI) function is the most popular [140]. This function is defined

as:

EI(θ) = E [max(0, f(θ) − f(θ̂))] , (B.11)

where θ is the current best parameter settings seen so far. Thus, the parameter setting

that maximizes this function has the expectation of improving over the best setting θ̂

found so far. The important property of EI is that it has a closed-form expression that

can be computed under the GP model using integration by parts:

EI(θ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(µ(θ) − f(θ̂)Φ(Z) + σ(θ)φ(Z) if σ(θ) > 0

0 if σ(θ) = 0
(B.12)

Z = µ(θ) − f(θ̂)
σ(θ) , (B.13)

where φ(Z) and Φ(Z) are the probability density function and the cumulative distribu-

tion function of the standard normal distribution, respectively. Equation B.12 has a high

value at locations where the expected performance surface µ(θ) = f̄(θ) is larger than the

current best value f(θ̂). Furthermore, EI is also high at locations that we did not explore

yet, which have large σ(θ) values indicating high uncertainty. Hence, EI allows a trade-off

between exploration versus exploitation. We then compute θo = argmaxθ∈Θ{EI(θ)}. The

derivatives of Equation B.12 can be computed analytically, and θo can be found using

standard gradient solvers (see [140] for derivations).

Appendix C

Go Code for the Algebra

Implementation

The Algebra is implemented as a Go language package. The package name is alg and

it contains four main files: 1) alg.go contains the algebra operators, 2) exgraph.go

contains types and functions for building, scheduling and executing workflow graphs, 3)

consts.go contains various used constants, and 4) messages.go includes the types that

define the header and body of messages communicated by the operators.

C.1 alg.go

1 package alg

2 import (

3 "sync"

4 "time"

5 "uuid" // https://github.com/satori/go.uuid

6)

7

8 //###

9 // Basic Types

230

Appendix C. Go Code for the Algebra Implementation 231

10 //###

11

12 type T interface{}

13 type Spout interface {

14 Read() T

15 }

16 type Cloneable interface {

17 Clone() T

18 }

19 type Disposable interface {

20 Dispose()

21 }

22

23 //###

24 // Functions

25 //###

26

27 type Parameter struct {

28 Value float64

29 Low float64 // lower bound

30 High float64 // upper bound

31 }

32

33 type Function struct {

34 FuncName string

35 FuncParams Params

36 State T

37 Mapper func(T, Params) T

38 Reducer func(T, T, Params) (T, T)

39 }

40

41 type Functions []*Function

42 type Params map[string]Parameter

Appendix C. Go Code for the Algebra Implementation 232

43

44 //###

45 // Processor

46 //###

47

48 type ProcessorInfo struct {

49 Name string

50 _type int

51 Funcs Functions

52 FuncIdx int //Current active Function

53 }

54

55 type NProcessor struct {

56 *ProcessorInfo

57 WRStatus int

58 ERStatus int

59 InStack *ProcessorStack

60 OutStack *ProcessorStack

61 Inputs []chan T

62 Outputs []chan T

63 F func(inputs ...chan T) []chan T

64 G *OGraph

65 C *sync.Cond

66 Composite bool

67 }

68

69 type Element struct {

70 value *ProcessorInfo

71 next *Element

72 }

73

74 type ProcessorStack struct {

75 top *Element

Appendix C. Go Code for the Algebra Implementation 233

76 size int

77 mutex *sync.Mutex

78 }

79

80 func (g *OGraph) NewProcessor(inchans []chan T, outchans []chan T, _type int) *NProcessor {

81 return &NProcessor{ProcessorInfo: &ProcessorInfo{FuncIdx: -1, _type: _type,

82 Name: uuid.NewV4().String()},

83 Inputs: inchans, Outputs: outchans,

84 InStack: &ProcessorStack{size: 0, mutex: &sync.Mutex{}},

85 OutStack: &ProcessorStack{size: 0, mutex: &sync.Mutex{}},

86 C: sync.NewCond(&sync.Mutex{}),

87 ERStatus: ST_RUN,

88 G : g,

89 WRStatus: ST_RESUME,

90 Composite: false}

91 }

92

93 func (p *NProcessor) Wait() bool {

94 if p.WRStatus == ST_REQWAIT {

95 p.C.L.Lock()

96 p.WRStatus = ST_WAIT

97 p.C.Wait()

98 p.WRStatus = ST_RESUME

99 p.C.L.Unlock()

100 if p.ERStatus == ST_EXIT {

101 return false

102 }

103 }

104 return true

105 }

106

107 func (p *NProcessor) Resume(newERState int) {

108 if p.WRStatus == ST_WAIT {

Appendix C. Go Code for the Algebra Implementation 234

109 p.C.L.Lock()

110 p.ERStatus = newERState

111 p.C.Broadcast()

112 p.C.L.Unlock()

113 }

114 }

115

116 func (p *NProcessor) WaitMessage(x T, chans ...chan T) (bool, bool) {

117 if x == nil {

118 return false, true

119 }

120 switch t := x.(type) {

121 case *cM:

122 if t.end == "" t.end != p.Name {

123 for _, c := range chans {

124 c <- x

125 }

126 }

127 p.ERStatus = t.ERStatus

128 p.WRStatus = t.WRStatus

129 return true, p.Wait()

130 default:

131 }

132 return false, true

133 }

134

135 func (p *NProcessor) ParseAttrib(attribs []T) *NProcessor{

136 var pproc *NProcessor = nil

137 st := 0

138 if len(attribs) > 0{

139 switch t := attribs[0].(type){

140 case string:

141 p.Name = t

Appendix C. Go Code for the Algebra Implementation 235

142 st = 1

143 }

144 }

145 for i:=st;i<len(attribs); i+=2 {

146 switch attribs[i].(int) {

147 case OP_ATTRIB_NAME:

148 p.Name = attribs[i+1].(string)

149 case OP_ATTRIB_FUNC_IDX:

150 p.FuncIdx = attribs[i+1].(int)

151 case OP_ATTRIB_ER_STATUS:

152 p.ERStatus = attribs[i+1].(int)

153 case OP_ATTRIB_WR_STATUS:

154 p.WRStatus = attribs[i+1].(int)

155 case oP_ATTRIB_PREV_PROC:

156 pproc = attribs[i+1].(*NProcessor)

157 case oP_ATTRIB_COMPOSITE:

158 p.Composite = attribs[i+1].(bool)

159 }

160 }

161 return pproc

162 }

163

164 func (p *ProcessorInfo) AddTimeInfo(t int, x T) {

165

166 ct := time.Now()

167 switch y := x.(type) {

168 case []T:

169 p.AddTimeInfo1(t, ct, y)

170 case T:

171 p.AddTimeInfo1(t, ct, y)

172 }

173 }

174

Appendix C. Go Code for the Algebra Implementation 236

175 func (proc *ProcessorInfo) AddTimeInfo1(t int, ct time.Time, Z ...T) {

176 name := proc.Name

177 // record time

178 for _, x := range Z {

179 if x == nil {

180 continue

181 }

182 switch c := x.(type) {

183 case *M:

184 var (

185 tinfo TimeInfo

186 ok bool

187)

188 if c == nil {

189 continue

190 }

191 if tinfo, ok = c.TmInfo[name]; !ok {

192 tinfo = TimeInfo{}

193 }

194 if t == PROC_ENTER_TIME t == PROC_BOTH_TIME {

195 tinfo.InTime = ct

196 }

197 if t == PROC_LEAVE_TIME t == PROC_BOTH_TIME {

198 tinfo.OutTime = ct

199 }

200 c.TmInfo[name] = tinfo

201 }

202 }

203 }

204

205 // Return the stack's length

206 func (s *ProcessorStack) Len() int {

207 return s.size

Appendix C. Go Code for the Algebra Implementation 237

208 }

209

210 // Push a new element onto the stack

211 func (s *ProcessorStack) Push(v *ProcessorInfo) {

212 s.top = &Element{value: v, next: s.top}

213 s.size++

214 }

215

216 // Remove the top element from the stack and return it's value

217 // If the stack is empty, return nil

218 func (s *ProcessorStack) Pop() (value *ProcessorInfo) {

219 if s.size > 0 {

220 value, s.top = s.top.value, s.top.next

221 s.size--

222 return

223 }

224 return nil

225 }

226

227 func (s *ProcessorStack) ExecStack(x T) T {

228 if x == nil {

229 return nil

230 }

231 y := x

232 for e := s.top; e != nil; e = e.next {

233 pi := e.value

234 pi.AddTimeInfo(PROC_ENTER_TIME, y)

235 if e.value._type == OP_REDUCE {

236 s.mutex.Lock()

237 state := e.value.FuncIdx].State

238 params := e.value.Funcs[e.value.FuncIdx].FuncParams

239 e.value.Funcs[e.value.FuncIdx].State, y =

240 e.value.Funcs[e.value.FuncIdx].Reducer(e.value.Funcs[state, y,

Appendix C. Go Code for the Algebra Implementation 238

241 params)

242 s.mutex.Unlock()

243 } else {

244 y = e.value.Funcs[e.value.FuncIdx].Mapper(y,

245 e.value.Funcs[e.value.FuncIdx].FuncParams)

246 }

247 pi.AddTimeInfo(PROC_ENTER_TIME, y)

248 }

249 return y

250 }

251

252 //###

253 // Functions for manipulating settings

254 //###

255

256 func ReadNewSettings(name string, x T) (int, Params) {

257 switch t := x.(type) {

258 case *M:

259 if t != nil {

260 if f, ok := t.FuncInfo[name]; ok {

261 return f.FuncIdx, f.FuncParams

262 }

263 }

264 }

265 return -1, Params{}

266 }

267

268 func UpdateSettings(proc *ProcessorInfo, x T) {

269 name := proc.Name

270

271 f_idx, params := ReadNewSettings(name, x)

272 if f_idx != -1 {

273 proc.FuncIdx = f_idx

Appendix C. Go Code for the Algebra Implementation 239

274 proc.Funcs[proc.FuncIdx].FuncParams = params

275 }

276

277 }

278

279 //##

280 //##

281 // First order operators

282 //##

283 //##

284 // 1. Data processing

285 //##

286

287 // Source

288 // It joins `group` and returns a Source processor

289 // which generates a data stream using the given

290 // spout.

291 func (g *OGraph) Source(s Spout, attribs ...T) *aGraph {

292 proc := g.NewProcessor(nil, []chan T{make(chan T)}, OP_SOURCE)

293 g.Register(proc, proc.ParseAttrib(attribs))

294 proc.F = func(inputs ...chan T) []chan T {

295 g.group.Add(1)

296 proc.Inputs = inputs

297 go func() {

298 defer g.group.Done()

299 defer close(proc.Outputs[0])

300 var x T

301 for {

302 t := time.Now()

303 x = s.Read()

304 if x == nil {

305 break

306 }

Appendix C. Go Code for the Algebra Implementation 240

307 proc.AddTimeInfo1(PROC_ENTER_TIME, t, x)

308 proc.AddTimeInfo(PROC_LEAVE_TIME, x)

309 proc.Outputs[0] <- proc.OutStack.ExecStack(x)

310 if !proc.Wait() {

311 break

312 }

313 }

314 }()

315 return proc.Outputs

316 }

317 return &aGraph{g, proc}

318 }

319

320 // Grounding sink

321 // It joins `group` and returns a sink processor

322 // which discards *all* of the inputs from its upstream.

323 // A sink processor is one that accepts an incoming stream, but

324 // has no output stream.

325 func (g *OGraph) Ground(attribs ...T) *aGraph {

326 proc := g.NewProcessor(nil, []chan T{}, OP_GROUND)

327 g.Register(proc, proc.ParseAttrib(attribs))

328 proc.F = func(inputs ...chan T) []chan T {

329 g.group.Add(1)

330 proc.Inputs = inputs

331 go func() {

332 defer g.group.Done()

333 for x := range proc.Inputs[0] {

334 // need to implement a disposing function.

335 comm, state := proc.WaitMessage(x, proc.Outputs...)

336 if !state {

337 break

338 }

339 if x != nil && !comm {

Appendix C. Go Code for the Algebra Implementation 241

340 x = proc.InStack.ExecStack(x)

341 proc.AddTimeInfo(PROC_ENTER_TIME, x)

342 (x.(Disposable)).Dispose()

343 ut := time.Now()

344 proc.AddTimeInfo1(PROC_LEAVE_TIME, ut, x)

345 }

346 }

347 }()

348 return proc.Outputs

349 }

350 return &aGraph{g, proc}

351 }

352

353 // Map processor:

354 // It joins `group` and uses a function `f`. The returned

355 // processor applies the function `f` to each input reading `x`

356 // from the upstream, and writes `f(x)` to the downstream.

357 func (g *OGraph) Map(funcs Functions, attribs ...T) *aGraph {

358 proc := g.NewProcessor(nil, []chan T{make(chan T)}, OP_MAP)

359 proc.Funcs, proc.FuncIdx = funcs, 0

360 g.Register(proc, proc.ParseAttrib(attribs))

361 proc.F = func(inputs ...chan T) []chan T {

362 g.group.Add(1)

363 proc.Inputs = inputs

364 go func() {

365 defer g.group.Done()

366 defer close(proc.Outputs[0])

367 for {

368 x, ok := <-proc.Inputs[0]

369 if !ok {

370 break

371 }

372 comm, state := proc.WaitMessage(x, proc.Outputs...)

Appendix C. Go Code for the Algebra Implementation 242

373 if !state {

374 break

375 }

376 if !comm {

377 x = proc.InStack.ExecStack(x)

378 proc.AddTimeInfo(PROC_ENTER_TIME, x)

379 UpdateSettings(proc.ProcessorInfo, x)

380 params := proc.Funcs[proc.FuncIdx].FuncParams

381 y := proc.Funcs[proc.FuncIdx].Mapper(x,

382 params)

383 y1 := proc.OutStack.ExecStack(y)

384 proc.AddTimeInfo(PROC_LEAVE_TIME, y1)

385 proc.Outputs[0] <- y1

386 }

387 }

388 }()

389 return proc.Outputs

390 }

391 return &aGraph{g, proc}

392 }

393

394 // Reduce processor:

395 // It maintains an internal state u which is initialized

396 // by `u0`. For each reading `x` from the incoming stream,

397 // reduce updates the state `u` using the `g` function and

398 // generates an output `y` for the outgoing stream.

399 func (g *OGraph) Reduce(u0 T, funcs Functions, attribs ...T) *aGraph {

400 proc := g.NewProcessor(nil, []chan T{make(chan T)}, OP_REDUCE)

401 proc.Funcs, proc.FuncIdx = funcs, 0

402 g.Register(proc, proc.ParseAttrib(attribs))

403 proc.F = func(inputs ...chan T) []chan T {

404 g.group.Add(1)

405 u := u0

Appendix C. Go Code for the Algebra Implementation 243

406 proc.Funcs[proc.FuncIdx].State = u0

407 proc.Inputs = inputs

408 go func() {

409 defer g.group.Done()

410 defer close(proc.Outputs[0])

411 defer (u.(Disposable)).Dispose()

412 var y T

413 for {

414 x, ok := <-proc.Inputs[0]

415 if !ok {

416 break

417 }

418 comm, state := proc.WaitMessage(x, proc.Outputs...)

419 if !state {

420 break

421 }

422 if !comm {

423 if x != nil {

424 x = proc.InStack.ExecStack(x)

425 proc.AddTimeInfo(PROC_ENTER_TIME, x)

426 UpdateSettings(proc.ProcessorInfo, x)

427 params := proc.Funcs[proc.FuncIdx].FuncParams

428 u, y = proc.Funcs[proc.FuncIdx].Reducer(u, x,

429 params)

430 proc.Funcs[proc.FuncIdx].State = u

431 y1 := proc.OutStack.ExecStack(y)

432 proc.AddTimeInfo(PROC_LEAVE_TIME, y1)

433 proc.Outputs[0] <- y1

434 } else {

435 proc.Outputs[0] <- x

436 }

437 }

438 }

Appendix C. Go Code for the Algebra Implementation 244

439 }()

440 return proc.Outputs

441 }

442 return &aGraph{g, proc}

443 }

444

445 // Copy processor:

446 // It makes duplicates o the incoming stream. It is

447 // important to observe that Copy writes its output

448 // synchronously on all duplicated outgoing streams.

449 func (g *OGraph) Copy(n int, attribs ...T) *aGraph {

450 outs := make([]chan T, n)

451 for i := 0; i < n; i++ {

452 outs[i] = make(chan T)

453 }

454 proc := g.NewProcessor(nil, outs, OP_COPYN)

455 g.Register(proc, proc.ParseAttrib(attribs))

456 proc.F = func(inputs ...chan T) []chan T {

457 proc.Inputs = inputs

458 g.group.Add(1)

459 go func() {

460 defer g.group.Done()

461 defer func() {

462 for i := 0; i < n; i++ {

463 close(proc.Outputs[i])

464 }

465 }()

466 for x := range proc.Inputs[0] {

467 comm, state := proc.WaitMessage(x, proc.Outputs...)

468 if !state {

469 break

470 }

471 if !comm {

Appendix C. Go Code for the Algebra Implementation 245

472 x = proc.InStack.ExecStack(x)

473 proc.AddTimeInfo(PROC_ENTER_TIME, x)

474 if x != nil {

475 for i := 1; i < n; i++ {

476 y := (x.(Cloneable)).Clone()

477 proc.AddTimeInfo(PROC_LEAVE_TIME, y)

478 proc.Outputs[i] <- y

479 }

480 proc.AddTimeInfo(PROC_LEAVE_TIME, x)

481 proc.Outputs[0] <- x

482 } else {

483 for i := 0; i < n; i++ {

484 proc.Outputs[i] <- x

485 }

486 }

487 }

488

489 }

490 }()

491 return proc.Outputs

492 }

493 return &aGraph{g, proc}

494 }

495

496 // Filter processor:

497 // It forwards certain readings from the incoming

498 // stream that meets the predicate `p` to the first

499 // output channel `c1` and send the remaining readings

500 // to `c2`.

501 func (g *OGraph) Filter(funcs Functions, attribs ...T) *aGraph {

502 proc := g.NewProcessor(nil, []chan T{make(chan T), make(chan T)}, OP_FILTER)

503 proc.Funcs, proc.FuncIdx = funcs, 0

504 g.Register(proc, proc.ParseAttrib(attribs))

Appendix C. Go Code for the Algebra Implementation 246

505 proc.F = func(inputs ...chan T) []chan T {

506 proc.Inputs = inputs

507 g.group.Add(1)

508 go func() {

509 defer g.group.Done()

510 defer close(proc.Outputs[0])

511 defer close(proc.Outputs[1])

512 for x := range proc.Inputs[0] {

513 comm, state := proc.WaitMessage(x, proc.Outputs...)

514 if !state {

515 break

516 }

517 if !comm {

518 x = proc.InStack.ExecStack(x)

519 proc.AddTimeInfo(PROC_ENTER_TIME, x)

520 UpdateSettings(proc.ProcessorInfo, x)

521 params := proc.Funcs[proc.FuncIdx].FuncParams

522 dec := proc.Funcs[proc.FuncIdx].Mapper(x, params).(bool)

523 proc.AddTimeInfo(PROC_LEAVE_TIME, x)

524 if dec {

525 proc.Outputs[0] <- x

526 } else {

527 proc.Outputs[1] <- x

528 }

529 }

530 }

531 }()

532 return proc.Outputs

533 }

534 return &aGraph{g, proc}

535 }

536

537 // //##

Appendix C. Go Code for the Algebra Implementation 247

538 // // 2. Rate Control

539 // //##

540

541 // Latch processor:

542 // It allows the incoming and outgoing channels to be

543 // asynchronous (namely transmitting at different rates).

544 // it returns two channels, the original input channel `c1` and

545 // the output channel `c2`.

546 func (g *OGraph) Latch(attribs ...T) *aGraph {

547 proc := g.NewProcessor(nil, []chan T{make(chan T), make(chan T)}, OP_LATCH)

548 g.Register(proc, proc.ParseAttrib(attribs))

549 proc.F = func(inputs ...chan T) []chan T {

550 var (

551 u T

552 proceed bool = true

553 clone bool = true

554)

555 proc.Inputs = inputs

556 g.group.Add(1)

557 go func() {

558 defer g.group.Done()

559 defer close(proc.Outputs[1])

560

561 for x := range inputs[0] {

562 comm, state := proc.WaitMessage(x, proc.Outputs...)

563 if !state {

564 break

565 }

566 if !comm {

567 x = proc.InStack.ExecStack(x)

568 proc.AddTimeInfo(PROC_ENTER_TIME, x)

569 if x != nil && clone {

570 if u != nil {

Appendix C. Go Code for the Algebra Implementation 248

571 (u.(Disposable)).Dispose()

572 }

573 u = (x.(Cloneable)).Clone()

574 }

575 proc.AddTimeInfo(PROC_LEAVE_TIME, x)

576 proc.Outputs[1] <- x

577 }

578 }

579 proceed = false

580 }()

581 g.group.Add(1)

582 go func() {

583 defer g.group.Done()

584 defer close(proc.Outputs[0])

585 var y T

586 for proceed {

587 y = u

588 clone = false

589 proc.AddTimeInfo(PROC_ENTER_TIME, y)

590 if y != nil {

591 y = (u.(Cloneable)).Clone()

592 }

593 clone = true

594 proc.AddTimeInfo(PROC_LEAVE_TIME, y)

595 proc.Outputs[0] <- y

596 }

597 }()

598 return proc.Outputs

599 }

600 return &aGraph{g, proc}

601 }

602

603 // Cut processor:

Appendix C. Go Code for the Algebra Implementation 249

604 // It allows the incoming and outgoing channles to be

605 // asynchronous (namely transmitting at different rates).

606 // it returns two channel, the original input channel `c1` and

607 // the output channel `c2`. The operator guarantees that every

608 // incoming reading is written once to the outgoing channel.

609 // A nil value is used for the extra write operations.

610 func (g *OGraph) Cut(attribs ...T) *aGraph {

611 proc := g.NewProcessor(nil, []chan T{make(chan T), make(chan T)}, OP_CUT)

612 g.Register(proc, proc.ParseAttrib(attribs))

613 proc.F = func(inputs ...chan T) []chan T {

614 g.group.Add(1)

615 var (

616 u T

617 proceed bool = true

618 clone bool = true

619)

620 proc.Inputs = inputs

621 go func() {

622 defer g.group.Done()

623 defer close(proc.Outputs[1])

624 for x := range proc.Inputs[0] {

625 comm, state := proc.WaitMessage(x, proc.Outputs...)

626 if !state {

627 break

628 }

629 if !comm {

630 x = proc.InStack.ExecStack(x)

631 proc.AddTimeInfo(PROC_ENTER_TIME, x)

632 if x != nil && u == nil && clone {

633 u = (x.(Cloneable)).Clone()

634 }

635 proc.AddTimeInfo(PROC_LEAVE_TIME, x)

636 proc.Outputs[1] <- x

Appendix C. Go Code for the Algebra Implementation 250

637 }

638 }

639 proceed = false

640 }()

641 g.group.Add(1)

642 go func() {

643 defer g.group.Done()

644 defer close(proc.Outputs[0])

645 for proceed {

646 y := u

647 proc.AddTimeInfo(PROC_ENTER_TIME, y)

648 clone = false

649 if y != nil {

650 y = u

651 u = nil

652 }

653 clone = true

654 proc.AddTimeInfo(PROC_LEAVE_TIME, y)

655 proc.Outputs[0] <- y

656 }

657 }()

658 return proc.Outputs

659 }

660 return &aGraph{g, proc}

661 }

662

663 // Multiply processor:

664 // It reads from two incoming channels inputs[0] and

665 // inputs[1] and outputs pairs (x1; x2) to the outgoing

666 // channel `c1`. Unlike Map, multiply synchronizes the

667 // writes with inputs[0] and latches with inputs[2]. It

668 // also forwards inputs[2] to `c2`.

669 func (g *OGraph) LeftMultiply(attribs ...T) *aGraph {

Appendix C. Go Code for the Algebra Implementation 251

670 proc := g.NewProcessor(nil, []chan T{make(chan T), make(chan T)}, OP_LEFT_MULTIPLY)

671 g.Register(proc, proc.ParseAttrib(attribs))

672 proc.F = func(inputs ...chan T) []chan T {

673 var clatch chan T

674 // outs := Latch1(group).F(inputs[1])

675 proc.Inputs = inputs

676 latch1 := g.Latch(oP_ATTRIB_COMPOSITE, true).proc

677 close(latch1.Outputs[1])

678 latch1.Outputs[1] = proc.Outputs[1]

679 outs := latch1.F(inputs[1])

680 clatch, proc.Outputs[1] = outs[0], outs[1]

681 g.group.Add(1)

682 go func() {

683 defer g.group.Done()

684 defer close(proc.Outputs[0])

685 for x := range inputs[0] {

686 proc.AddTimeInfo(PROC_ENTER_TIME, x)

687 if y, ok := <-clatch; ok {

688 proc.AddTimeInfo(PROC_ENTER_TIME, y)

689 yy := []T{x, y}

690 proc.AddTimeInfo(PROC_LEAVE_TIME, x)

691 proc.AddTimeInfo(PROC_LEAVE_TIME, y)

692 proc.Outputs[0] <- yy

693 }

694 }

695 }()

696 return proc.Outputs

697 }

698 return &aGraph{g, proc}

699 }

700

701 // Multiply processor:

702 // It reads from multiple incoming channels and writes to one

Appendix C. Go Code for the Algebra Implementation 252

703 // outgoing channel. The operator reads one value at

704 // a time from each incoming stream, forms a vector

705 // (x_1,...,x_k), and synchronously writes this vector

706 // to the outgoing stream.

707 func (g *OGraph) Multiply(attribs ...T) *aGraph {

708 proc := g.NewProcessor(nil, []chan T{make(chan T)}, OP_MULTIPLY)

709 g.Register(proc, proc.ParseAttrib(attribs))

710 proc.F = func(inputs ...chan T) []chan T {

711 k := 0

712 ok := false

713 proc.Inputs = inputs

714 g.group.Add(1)

715 go func() {

716 defer g.group.Done()

717 defer close(proc.Outputs[0])

718 for {

719 k = 0

720 y := make([]T, len(proc.Inputs))

721 for _, x := range proc.Inputs {

722 y[k], ok = <-x

723 if ok {

724 proc.AddTimeInfo(PROC_ENTER_TIME, y[k])

725 k++

726 }

727 }

728 if k == 0 {

729 break

730 }

731 proc.AddTimeInfo1(PROC_LEAVE_TIME, time.Now(), y...)

732 proc.Outputs[0] <- proc.OutStack.ExecStack(y[0:k])

733 }

734 }()

735 return proc.Outputs

Appendix C. Go Code for the Algebra Implementation 253

736 }

737 return &aGraph{g, proc}

738 }

739

740 // Add processor:

741 // It merges multiple incoming channels in a greedy fashion.

742 // It performs best effort reads on the incoming collection

743 // of channels asynchronously, and writes to one outgoing

744 // channel.

745 func (g *OGraph) Add(attribs ...T) *aGraph {

746 proc := g.NewProcessor(nil, []chan T{make(chan T)}, OP_ADD)

747 g.Register(proc, proc.ParseAttrib(attribs))

748 proc.F = func(inputs ...chan T) []chan T {

749 k := len(inputs)

750 proc.Inputs = inputs

751 for i, cin := range inputs {

752 g.group.Add(1)

753 go func(i int, cin chan T) {

754 defer g.group.Done()

755 for x := range cin {

756 proc.AddTimeInfo(PROC_ENTER_TIME, x)

757 proc.AddTimeInfo(PROC_LEAVE_TIME, x)

758 proc.Outputs[0] <- proc.OutStack.ExecStack(x)

759 }

760 k--

761 if k == 0 {

762 close(proc.Outputs[0])

763 }

764 }(i, cin)

765 }

766 return proc.Outputs

767 }

768 return &aGraph{g, proc}

Appendix C. Go Code for the Algebra Implementation 254

769 }

770

771 // //##

772 // //##

773 // // Higher order operators

774 // //##

775

776 // Scatter processor:

777 // It reads from an incoming channel, but generates a list of

778 // outgoing channels. The list of outgoing channels can be

779 // arbitrary size controlled by the fan out parameter `fout`.

780 // It is parameterized by the generator function `f` and a

781 // partition function `p`. `f` computes for each incoming value,

782 // a vector of emitted values to the output channels. `p` maps

783 // each emitted value to one output channel, and it has the

784 // signature `p(emitted_element, vector_index, fout)`.

785 func (g *OGraph) Scatter(f func(T) []T, p func(T, int, int) int, fout int, attribs ...T)

786 *aGraph {

787 outs := make([]chan T, fout)

788 for i := 0; i < fout; i++ {

789 outs[i] = make(chan T)

790 }

791 proc := g.NewProcessor(nil, outs, OP_SCATTER)

792 g.Register(proc, proc.ParseAttrib(attribs))

793 proc.F = func(inputs ...chan T) []chan T {

794 proc.Inputs = inputs

795 g.group.Add(1)

796 go func() {

797 defer g.group.Done()

798 defer func() {

799 for i := 0; i < n; i++ {

800 close(proc.Outputs[i])

801 }

Appendix C. Go Code for the Algebra Implementation 255

802 }()

803 for x := range proc.Inputs[0] {

804 comm, state := proc.WaitMessage(x, proc.Outputs...)

805 if !state {

806 break

807 }

808 if !comm {

809 x = proc.InStack.ExecStack(x)

810 proc.AddTimeInfo(PROC_ENTER_TIME, x)

811 if x != nil {

812 v := f(x)

813 for i, y := range v {

814 proc.Outputs[p(y, i, fout)] <- y

815 }

816 }

817 }

818 }

819 }()

820 return proc.Outputs

821 }

822 return &aGraph{g, proc}

823 }

824

825 // Merge processor:

826 // It merges a collection of incoming channels back into a

827 // single outgoing channel. A function `f` continuously receives

828 // a buffer of the same size as the number of input channels.

829 // Every element in this buffer contains either an input element

830 // or nil. `f` must perform a merge or selection operation on the

831 // buffer and returns the resulted element. 'f' also returns the

832 // element index in case of a selection operation or -1 in case

833 // of a merge operation. Note that input channels should be from

834 // decoupled sources. In case of Scatter, only the merge

Appendix C. Go Code for the Algebra Implementation 256

835 // operation is supported.

836 func (g *OGraph) Merge(f func([]T) (int, T), attribs ...T) *aGraph {

837 proc := g.NewProcessor(nil, []chan T{make(chan T)}, OP_MERGE)

838 g.Register(proc, proc.ParseAttrib(attribs))

839 proc.F = func(inputs ...chan T) [] chan T {

840 proc.Inputs = inputs

841 g.group.Add(1)

842 k := len(inputs)

843 buf, ok := make([]T, k), make([]bool, k)

844 for i := 0; i < k; i++ {

845 ok[i] = true

846 }

847 go func() {

848 defer close(proc.Outputs[0])

849 defer g.group.Done()

850 for k > 0 {

851 for i := 0; i < len(proc.Inputs); i++ {

852 if buf[i] == nil && ok[i] {

853 buf[i], ok[i] = <-proc.Inputs[i]

854 if !ok[i] {

855 k--

856 }

857 }

858 }

859 i, y := f(buf)

860 if y != nil {

861 proc.Outputs[0] <- y

862 }

863 if i < 0 {

864 buf = make([]T, len(inputs))

865 } else {

866 buf[i] = nil

867 }

Appendix C. Go Code for the Algebra Implementation 257

868 }

869 }()

870 return proc.Outputs

871 }

872 return &aGraph{g, proc}

873 }

C.2 exgraph.go

1 package alg

2 import (

3 "fmt"

4 "graph" // https://github.com/twmb/algoimpl/tree/master/go/graph

5 "math"

6 "runtime"

7 "sync"

8 "time"

9)

10

11 //###

12 // Workflow Graph

13 //###

14

15 type ChanInfo struct {

16 In_idxs []int //indecies of input channels

17 Out_idxs []int //indecies of output channels

18 }

19 type EdgeInfo struct {

20 chans map[string]*ChanInfo // channels used for a graph edge

21 n_inchans int // number of input channels

22 n_outchans int // number of output channels

23 }

Appendix C. Go Code for the Algebra Implementation 258

24

25 type OGraph struct {

26 *graph.Graph

27 nodes_map map[string]graph.Node // a map for storing graph nodes

28 split_nodes map[string]graph.Node // a map for storing split nodes

29 gnd_nodes map[string]graph.Node // a map for storing ground nodes

30 edges_info map[string]*EdgeInfo // a map for storing input and output edges (channels)

31 inChan_mask map[string][]string

32 outChan_mask map[string][]string

33 Alpha float64

34 DecayInt float64 // Decay interval

35 SchInt float64 // Scheduling interval

36 Active bool // Not used now

37 NumCpu int // number of cpus for scheduling

38 monProc *NProcessor // Monitor processor

39 TL, TP float64 // Thresholds for Period and Latency

40 group *sync.WaitGroup

41 // updates map[string]*ProcInfoList

42 // views []ParamsViewer

43 }

44

45 type aGraph struct{

46 *OGraph

47 proc *NProcessor

48 }

49

50

51 func NewOGraph() *OGraph {

52 return &OGraph{Graph: graph.New(graph.Directed),

53 nodes_map: make(map[string]graph.Node),

54 split_nodes: make(map[string]graph.Node),

55 gnd_nodes: make(map[string]graph.Node),

56 edges_info: make(map[string]*EdgeInfo),

Appendix C. Go Code for the Algebra Implementation 259

57 inChan_mask: make(map[string][]string),

58 outChan_mask: make(map[string][]string),

59 Alpha: 0.2, DecayInt: 5000, SchInt: 10000,

60 Active: true, NumCpu: runtime.NumCPU(), monProc: nil,

61 TL: 100, TP: 60, group: &sync.WaitGroup{}}

62 }

63

64 func (g *OGraph) AddProc(proc *NProcessor) {

65 n := g.MakeNode()

66 g.nodes_map[proc.Name] = n

67 g.edges_info[proc.Name] = &EdgeInfo{map[string]*ChanInfo{}, 0, 0, nil}

68 g.outChan_mask[proc.Name] = make([]string, 0)

69 g.inChan_mask[proc.Name] = make([]string, 0)

70 proc.G = g

71 *g.nodes_map[proc.Name].Value = proc

72 if proc._type != OP_MAP && proc._type != OP_REDUCE && proc._type != OP_GROUND {

73 g.split_nodes[proc.Name] = n

74 }

75 if proc._type == OP_GROUND {

76 g.gnd_nodes[proc.Name] = n

77 }

78 }

79

80 func (g *OGraph) Get(name string) *NProcessor {

81 if n, ok := g.nodes_map[name]; ok{

82 return (*n.Value).(*NProcessor)

83 }else{

84 panic(fmt.Sprintf("Couldn't find name %s in Get method", name))

85 }

86 }

87

88 func (g *OGraph) Dispose() {}

89

Appendix C. Go Code for the Algebra Implementation 260

90 func (g *OGraph) Connect(name1 string, name2 string, out_idxs, in_idxs []int) {

91 g.MakeEdge(g.nodes_map[name1], g.nodes_map[name2])

92 for i:=0;i<len(out_idxs); i++{

93 if out_idxs[i] < len(g.outChan_mask[name1]){

94 panic(fmt.Sprintf("Output channel %d of operator %s is already occupied

95 by %s, failed to reset it to %s",

96 out_idxs[i], name1, g.outChan_mask[name1][out_idxs[i]], name2))

97 }else{

98 g.outChan_mask[name1] = append(g.outChan_mask[name1], name2)

99 }

100 }

101 for i:=0;i<len(in_idxs); i++{

102 if in_idxs[i] < len(g.inChan_mask[name2]){

103 panic(fmt.Sprintf("Input channel %d of operator %s is already occupied

104 by %s, failed to reset it to %s",

105 in_idxs[i], name2, g.inChan_mask[name2][in_idxs[i]], name1))

106 }else{

107 g.inChan_mask[name2] = append(g.inChan_mask[name2], name1)

108 }

109 }

110 if cinfo, ok := g.edges_info[name2].chans[name1]; ok {

111 cinfo.In_idxs = append(cinfo.In_idxs, in_idxs...)

112 cinfo.Out_idxs = append(cinfo.Out_idxs, out_idxs...)

113 }else{

114 g.edges_info[name2].chans[name1] = &ChanInfo{in_idxs, out_idxs}

115 }

116

117 g.edges_info[name2].n_inchans = g.edges_info[name2].n_inchans + len(in_idxs)

118 g.edges_info[name1].n_outchans = g.edges_info[name1].n_outchans + len(out_idxs)

119 }

120

121 func (g *OGraph) LinkOut(fork string, ops ...string) {

122 // for free output channgels from the fork operator

Appendix C. Go Code for the Algebra Implementation 261

123 k := len(ops)

124 if _, ok := g.nodes_map[fork]; !ok {panic(fmt.Sprintf("Couldn't find fork operator %s

125 in LinkOut", fork))}

126 for i := 0; i<k; i++{

127 if _, ok := g.nodes_map[ops[i]]; !ok{

128 panic(fmt.Sprintf("Couldn't find listed operator %s in LinkOut", ops[i]))

129 }

130 }

131 f_offset := len(g.outChan_mask[fork])

132 ops_offsets := make([]int, k)

133 for i := 0; i<k; i++{

134 ops_offsets[i] = len(g.inChan_mask[ops[i]])

135 }

136

137 // perform the linking operation

138 for i := 0; i<k; i++{

139 g.Connect(fork, ops[i], []int{f_offset+i}, []int{ops_offsets[i]})

140 }

141 }

142

143 func (g *OGraph) LinkIn(join string, ops ...string) {

144 // for free output channgels from the fork operator

145 k := len(ops)

146 if _, ok := g.nodes_map[join]; !ok {panic(fmt.Sprintf("Couldn't find join operator %s

147 in LinkIn", join))}

148 for i := 0; i<k; i++{

149 if _, ok := g.nodes_map[ops[i]]; !ok{

150 panic(fmt.Sprintf("Couldn't find listed operator %s in LinkIn", ops[i]))

151 }

152 }

153 j_offset := len(g.inChan_mask[join])

154 ops_offsets := make([]int, k)

155 for i := 0; i<k; i++{

Appendix C. Go Code for the Algebra Implementation 262

156 ops_offsets[i] = len(g.outChan_mask[ops[i]])

157 }

158

159 // perform the linking operation

160 for i := 0; i<k; i++{

161 g.Connect(ops[i], join, []int{ops_offsets[i]}, []int{j_offset+i})

162 }

163 }

164

165 func (g *OGraph) Register(proc, pproc *NProcessor) {

166 if proc.Composite {return}

167 g.AddProc(proc)

168 if pproc != nil{

169 idxs := make([]int, len(pproc.Outputs))

170 for i,_ := range idxs{idxs[i] = i}

171 g.Connect(pproc.Name, proc.Name, idxs, idxs)

172 }

173 }

174

175 func (g *OGraph) Wait() {

176 g.group.Wait()

177 }

178

179 func (g *aGraph) Source(s Spout, attribs ...T) *aGraph{

180 attribs = append(attribs, oP_ATTRIB_PREV_PROC, g.proc)

181 return g.OGraph.Source(s, attribs...)

182 }

183

184 func (g *aGraph) Ground(attribs ...T) *aGraph{

185 attribs = append(attribs, oP_ATTRIB_PREV_PROC, g.proc)

186 return g.OGraph.Ground(attribs...)

187 }

188

Appendix C. Go Code for the Algebra Implementation 263

189 func (g *aGraph) Map(funcs Functions, attribs ...T) *aGraph {

190 attribs = append(attribs, oP_ATTRIB_PREV_PROC, g.proc)

191 return g.OGraph.Map(funcs, attribs...)

192 }

193

194 func (g *aGraph) Reduce(u0 T, funcs Functions, attribs ...T) *aGraph {

195 attribs = append(attribs, oP_ATTRIB_PREV_PROC, g.proc)

196 return g.OGraph.Reduce(u0, funcs, attribs...)

197 }

198

199 func (g *aGraph) Copy(n int, attribs ...T) *aGraph {

200 attribs = append(attribs, oP_ATTRIB_PREV_PROC, g.proc)

201 return g.OGraph.Copy(n, attribs...)

202 }

203

204 func (g *aGraph) Filter(funcs Functions, attribs ...T) *aGraph {

205 attribs = append(attribs, oP_ATTRIB_PREV_PROC, g.proc)

206 return g.OGraph.Filter(funcs, attribs...)

207 }

208

209 func (g *aGraph) Latch(attribs ...T) *aGraph {

210 attribs = append(attribs, oP_ATTRIB_PREV_PROC, g.proc)

211 return g.OGraph.Latch(attribs...)

212 }

213

214 func (g *aGraph) Cut(attribs ...T) *aGraph {

215 attribs = append(attribs, oP_ATTRIB_PREV_PROC, g.proc)

216 return g.OGraph.Cut(attribs...)

217 }

218

219 func (g *aGraph) LeftMultiply(attribs ...T) *aGraph {

220 attribs = append(attribs, oP_ATTRIB_PREV_PROC, g.proc)

221 return g.OGraph.LeftMultiply(attribs...)

Appendix C. Go Code for the Algebra Implementation 264

222 }

223

224 func (g *aGraph) Multiply(attribs ...T) *aGraph {

225 attribs = append(attribs, oP_ATTRIB_PREV_PROC, g.proc)

226 return g.OGraph.Multiply(attribs...)

227 }

228

229 func (g *aGraph) Add(attribs ...T) *aGraph {

230 attribs = append(attribs, oP_ATTRIB_PREV_PROC, g.proc)

231 return g.OGraph.Add(attribs...)

232 }

233

234 func (g *aGraph) Scatter(f func(T) []T, p func(T, int, int) int, fout int,attribs ...T)

235 *aGraph {

236 attribs = append(attribs, oP_ATTRIB_PREV_PROC, g.proc)

237 return g.OGraph.Scatter(f, p, fout, attribs...)

238 }

239

240 func (g *aGraph) Merge(f func([]T) (int, T), attribs ...T) *aGraph {

241 attribs = append(attribs, oP_ATTRIB_PREV_PROC, g.proc)

242 return g.OGraph.Merge(f, attribs...)

243 }

244

245 func (g *OGraph) Execute() {

246 for name2, e_info := range g.edges_info {

247 chans := make([]chan T, e_info.n_inchans)

248 in_proc := (*g.nodes_map[name2].Value).(*NProcessor)

249 // now connect chans

250 for name1, chan_info := range e_info.chans {

251 out_proc := (*g.nodes_map[name1].Value).(*NProcessor)

252 for i, idx := range chan_info.In_idxs {

253 chans[idx] = out_proc.Outputs[chan_info.Out_idxs[i]]

254 }

Appendix C. Go Code for the Algebra Implementation 265

255 }

256 in_proc.F(chans...)

257 }

258 }

C.3 messages.go

1 package alg

2 import(

3 "time"

4)

5

6 type FuncInfo struct {

7 FuncIdx int

8 FuncParams Params

9 }

10

11 type TimeInfo struct {

12 InTime time.Time

13 OutTime time.Time

14 }

15

16 type MHeader struct {

17 FuncInfo map[string]FuncInfo

18 TmInfo map[string]TimeInfo

19 Attribs map[string]T

20 }

21

22 type M struct {

23 *MHeader

24 Value T

25 }

Appendix C. Go Code for the Algebra Implementation 266

26

27 type cM struct {

28 start, end string

29 WRStatus int

30 ERStatus int

31 value T

32 }

33

34 func (m *M) Clone() T {

35 // copy time info and share OpInfo

36 if m == nil {

37 return nil

38 }

39 tinfo := map[string]TimeInfo{}

40 for k, v := range m.TmInfo {

41 tinfo[k] = v

42 }

43 if m.Value == nil {

44 return &M{&MHeader{FuncInfo: m.FuncInfo,

45 TmInfo: tinfo, Attribs: map[string]T{}}, nil}

46 } else {

47 return &M{&MHeader{FuncInfo: m.FuncInfo,

48 TmInfo: tinfo, Attribs: map[string]T{}},

49 (m.Value.(Cloneable)).Clone()}

50 }

51

52 }

53

54 func (m *M) Dispose() {

55 if m != nil && m.Value != nil {

56 (m.Value.(Disposable)).Dispose()

57 }

58 }

Appendix C. Go Code for the Algebra Implementation 267

59

60 func (m *M) Exists() bool {

61 if m == nil {

62 return false

63 }

64 if m.Value == nil {

65 return false

66 }

67 return true

68 }

69

70 func (m *MHeader) AddTimeInfo(tinfo map[string]TimeInfo) {

71 if tinfo == nil {

72 return

73 }

74 for k, v := range tinfo {

75 if _, ok := m.TmInfo[k]; !ok {

76 m.TmInfo[k] = v

77 }

78 }

79 }

80

81 func NewMessage(v T) *M {

82 return &M{&MHeader{FuncInfo: map[string]FuncInfo{},

83 TmInfo: map[string]TimeInfo{}, Attribs: map[string]T{}}, v}

84 }

85

86 func MessageV(x T) T {

87 if x == nil {

88 return nil

89 }

90 switch t := x.(type) {

91 case *M:

Appendix C. Go Code for the Algebra Implementation 268

92 if t == nil {return nil}

93 return t.Value

94 default:

95 return x

96 }

97 }

98

99 func MessageH(x T) *MHeader {

100 if x == nil {

101 return nil

102 }

103 switch t := x.(type) {

104 case *M:

105 if t == nil {return nil}

106 return t.MHeader

107 default:

108 return nil

109 }

110 }

111

112 func Message(x T) *M {

113 if x == nil {

114 return nil

115 }

116 switch t := x.(type) {

117 case *M:

118 if t == nil {return nil}

119 return t

120 default:

121 return nil

122 }

123 }

Appendix C. Go Code for the Algebra Implementation 269

C.4 consts.go

1 package alg

2 const (

3 OP_SOURCE int = iota

4 OP_GROUND

5 OP_MAP

6 OP_REDUCE

7 OP_FILTER

8 OP_COPY

9 OP_COPYN

10 OP_LATCH

11 OP_CUT

12 OP_LEFT_MULTIPLY

13 OP_MULTIPLY

14 OP_ADD

15 OP_SCATTER

16 OP_MERGE

17 OP_MISC

18)

19

20 const (

21 OP_ATTRIB_NAME int = iota

22 OP_ATTRIB_FUNC_IDX

23 OP_ATTRIB_WR_STATUS

24 OP_ATTRIB_ER_STATUS

25 oP_ATTRIB_PREV_PROC // internal use only

26 oP_ATTRIB_COMPOSITE

27)

28

29 const (

30 ST_RUN int = iota

31 ST_EXIT

Appendix C. Go Code for the Algebra Implementation 270

32)

33

34 const (

35 ST_REQWAIT int = iota

36 ST_WAIT

37 ST_RESUME

38)

39

40 const (

41 PROC_ENTER_TIME int = iota

42 PROC_LEAVE_TIME

43 PROC_BOTH_TIME

44)

Bibliography

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk. SLIC su-

perpixels compared to state-of-the-art superpixel methods. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 34(11):2274–2282, Nov 2012.

[2] B. Adenso-Diaz and M. Laguna. Fine-tuning of algorithms using fractional exper-

imental designs and local search. Operational Research, 54(1):99–114, Jan 2006.

[3] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving

data streams. In International Conference on Very Large Data Bases, volume 29,

pages 81–92, Sep 2003.

[4] J.M. Alvarez, A.M. Lopez, T. Gevers, and F. Lumbreras. Combining priors, ap-

pearance, and context for road detection. IEEE Transactions on Intelligent Trans-

portation Systems, 15(3):1168–1178, Jun 2014.

[5] L. Alvarez, J. Weickert, and J. Snchez. Reliable estimation of dense optical

flow fields with large displacements. International Journal of Computer Vision,

39(1):41–56, Aug 2000.

[6] M. Aly. Real time detection of lane markers in urban streets. In IEEE Intelligent

Vehicles Symposium, pages 7–12, Jun 2008.

[7] P. Anandan. A computational framework and an algorithm for the measurement of

visual motion. International Journal of Computer Vision, 2(3):283–310, Jan 1989.

271

Bibliography 272

[8] R. Ananthanarayanan, V. Basker, S. Das, A. Gupta, H. Jiang, T. Qiu,

A. Reznichenko, D. Ryabkov, M. Singh, and S. Venkataraman. Photon: Fault-

tolerant and scalable joining of continuous data streams. In ACM Special Interest

Group on Management of Data, pages 577–588, Jun 2013.

[9] C. Ansótegui, M. Sellmann, and K. Tierney. A gender-based genetic algorithm for

the automatic configuration of algorithms. In International Conference on Princi-

ples and Practice of Constraint Programming, pages 142–157, 2009.

[10] Apache Kafka. http://kafka.apache.org. Accessed: 2016-07-17.

[11] Apache Spark. http://Spark.apache.org. Accessed: 2016-07-17.

[12] Apache Storm. http://storm.apache.org/. Accessed: 2016-07-17.

[13] A. Arasu, B. Babcock, S. Babu, J. McAlister, and J. Widom. Characterizing

memory requirements for queries over continuous data streams. Technical Report

2002–29, Stanford InfoLab, May 2002.

[14] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. New York:

ACM Press, Addison-Wesley, 1999.

[15] C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields

for highly accurate large displacement optical flow estimation. In International

Conference on Computer Vision, pages 4015–4023, Dec 2015.

[16] C Bailer, K Varanasi, and D Stricker. Cnn-based patch matching for optical flow

with thresholded hinge embedding loss. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 2710–2719, Jul 2017.

[17] S. Baker, D. Scharstein, J.P. Lewis, S. Roth, M.J. Black, and R. Szeliski. A database

and evaluation methodology for optical flow. International Journal of Computer

Vision, 92(1):1–31, Mar 2011.

http://kafka.apache.org
http://Spark.apache.org
http://storm.apache.org/

Bibliography 273

[18] L. Bao, Q. Yang, and H. Jin. Fast edge-preserving patchmatch for large displace-

ment optical flow. IEEE Transactions on Image Processing, 23(12):4996–5006, Dec

2014.

[19] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman. Patchmatch: A ran-

domized correspondence algorithm for structural image editing. ACM Transactions

on Graphics, 28(3):24:1–24:11, Jul 2009.

[20] G. Barrett. Model checking in practice: the t9000 virtual channel processor. IEEE

Transactions on Software Engineering, 21(2):69–78, Feb 1995.

[21] T. Bartz-Beielstein, C. W. G. Lasarczyk, and M. Preuss. Sequential parameter

optimization. In IEEE Congress on Evolutionary Computation, volume 1, pages

773–780, Sept 2005.

[22] T. Bartz-Beielstein and S. Markon. Tuning search algorithms for real-world ap-

plications: A regression tree based approach. In IEEE Congress on Evolutionary

Computation, pages 1111–1118, Jun 2004.

[23] R. Ben-Ari and N. Sochen. Stereo matching with mumford-shah regularization

and occlusion handling. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 32(11):2071–2084, Nov 2010.

[24] A. Benoit, Ü. Çatalyürek, Y. Robert, and E. Saule. A survey of pipelined workflow

scheduling: Models and algorithms. ACM Computing Surveys, 45(4):50:1–50:36,

August 2013.

[25] Anne Benoit, Harald Kosch, Veronika Rehn-Sonigo, and Yves Robert. Multi-

criteria scheduling of pipeline workflows (and application to the jpeg encoder).

International Journal of High Performance Computing Applications, 23(2):171–

187, May 2009.

Bibliography 274

[26] Anne Benoit and Yves Robert. Complexity results for throughput and latency

optimization of replicated and data-parallel workflows. Algorithmica, 57(4):689–

724, Aug 2008.

[27] F. Besse, C. Rother, A. Fitzgibbon, and J. Kautz. Pmbp: Patchmatch belief

propagation for correspondence field estimation. International Journal of Computer

Vision, 110(1):2–13, Oct 2014.

[28] D. N. Bhat and S. K. Nayar. Ordinal measures for image correspondence. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(4):415–423, Apr

1998.

[29] A. Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer, T. Jansen, and T. Seidl.

Moa: Massive online analysis, a framework for stream classification and clustering.

In Journal of Machine Learning Research, volume 11, pages 44–50, Sep 2010.

[30] F. Bignone, O. Henricsson, P. Fua, and M. Stricker. Automatic extraction of

generic house roofs from high resolution aerial imagery. In European Conference

on Computer Vision, pages 83–96, Apr 1996.

[31] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm

for configuring metaheuristics. In Proceedings of the Genetic and Evolutionary

Computation Conference, pages 11–18, Jul 2002.

[32] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle. F-Race and Iterated F-Race:

An Overview, pages 311–336. Springer Berlin Heidelberg, 2010.

[33] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via

graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,

23(11):1222–1239, Nov 2001.

[34] L. Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001.

Bibliography 275

[35] M. Brown, G. Hua, and S. Winder. Discriminative learning of local image descrip-

tors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1):43–

57, Jan 2011.

[36] M. Z. Brown, D. Burschka, and G. D. Hager. Advances in computational stereo.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8):993–1008,

Aug 2003.

[37] T. Brox and J. Malik. Large displacement optical flow: Descriptor matching in vari-

ational motion estimation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 33(3):500–513, Mar 2011.

[38] M. Broy and G. Stefanescu. The algebra of stream processing functions. Theoretical

Computer Science, 258(1-2):99–129, May 2001.

[39] C. Brust, S. Sickert, M. Simon, E. Rodner, and J. Denzler. Convolutional patch

networks with spatial prior for road detection and urban scene understanding. In

International Conference on Computer Vision Theory and Applications, pages 11–

14, March 2015.

[40] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source

movie for optical flow evaluation. In European Conference on Computer Vision,

pages 611–625, Oct 2012.

[41] J. Canny. A computational approach to edge detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698, Nov 1986.

[42] Y. Cao, D. Barrett, A. Barbu, S. Narayanaswamy, H. Yu, A. Michaux, Y. Lin,

S. Dickinson, J.M. Siskind, and S. Wang. Recognize human activities from partially

observed videos. In IEEE Conference on Computer Vision and Pattern Recognition,

pages 2658–2665, Jun 2013.

Bibliography 276

[43] J. Carlson and B. Lisper. An event detection algebra for reactive systems. In ACM

International Conference on Embedded Software, pages 147–154, Sep 2004.

[44] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stone-

braker, N. Tatbul, and S. Zdonik. Monitoring streams: A new class of data manage-

ment applications. In International Conference on Very Large Data Bases, pages

215–226, Aug 2002.

[45] J. Cech and R. Sara. Efficient sampling of disparity space for fast and accurate

matching. In IEEE Conference on Computer Vision and Pattern Recognition, pages

1–8, June 2007.

[46] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. Henry, Bradshaw R, and

N. Weizenbaum. Flumejava: Easy, efficient data-parallel pipelines. In ACM SIG-

PLAN Conference on Programming Language Design and Implementation, pages

363–375, Jun 2010.

[47] D.P. Chau, J. Badie, F. Bremond, and M. Thonnat. Online tracking parame-

ter adaptation based on evaluation. In IEEE Conference on Advanced Video and

Signal-Based Surveillance, pages 189–194, Aug 2013.

[48] D.P. Chau, F. Bremond, and M. Thonnat. A multi-feature tracking algorithm

enabling adaptation to context variations. In International Conference on Imaging

for Crime Detection and Prevention, pages 1–6, Nov 2011.

[49] C. Chefd’Hotel and A. Sebbane. Random walk and front propagation on watershed

adjacency graphs for multilabel image segmentation. In International Conference

on Computer Vision, pages 1–7, Oct 2007.

[50] Z. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow

from nearest neighbor fields. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 2443–2450, Jun 2013.

Bibliography 277

[51] Z. Chen, Y. Yan, and T. Ellis. Lane detection by trajectory clustering in urban

environments. In International IEEE Conference on Intelligent Transportation Sys-

tems, pages 3076–3081, Oct 2014.

[52] G.B. Chkodrov, P.F. Ringseth, T.T. Tarnavski, A. Shen, R.S. Barga, and J. Gold-

stein. Implementation of stream algebra over class instances, Google patents, Jan

2013.

[53] E. Corvee and F. Bremond. Body parts detection for people tracking using trees

of histogram of oriented gradient descriptors. In IEEE Conference on Advanced

Video and Signal-Based Surveillance, pages 469–475, Aug 2010.

[54] A. Delong, A. Osokin, H.N. Isack, and Y. Boykov. Fast approximate energy min-

imization with label costs. International Journal of Computer Vision, 96(1):1–27,

Jan 2012.

[55] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White. A general alge-

bra and implementation for monitoring event streams. Technical report, Cornell

University, 2005.

[56] G. Egnal and R. P. Wildes. Detecting binocular half-occlusions: empirical com-

parisons of five approaches. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 24(8):1127–1133, Aug 2002.

[57] P.F. Felzenszwalb and D.P. Huttenlocher. Efficient belief propagation for early

vision. International Journal of Computer Vision, 70(1):41–54, Oct 2006.

[58] A. Field. Discovering Statistics Using IBM SPSS. SAGE Publications, Thousand

Oaks, California, United States, 5th edition, 2017.

[59] L. Figueiredo. Adaptive sampling of parametric curves. In Graphics Gems V, pages

173–178. Academic Press, 1995.

Bibliography 278

[60] Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Caner Hazirbas Philip Hausser, and

Vladimir Golkov. Flownet: Learning optical flow with convolutional networks. In

International Conference on Computer Vision, pages 2758–2766, Dec 2015.

[61] Robert B. Fisher. Subpixel estimation. In Computer Vision, A Reference Guide,

pages 775–777. 2014.

[62] D. Fortun, P. Bouthemy, and C. Kervrann. Optical flow modeling and computation:

A survey. Computer Vision and Image Understanding, 134:1–21, May 2015.

[63] R. Furuta, S. Ikehata, T. Yamasaki, and K. Aizawa. Coarse-to-fine strategy for effi-

cient cost-volume filtering. In IEEE International Conference on Image Processing,

pages 3793–3797, Oct 2014.

[64] D. Gallup, J.-M. Frahm, P. Mordohai, Y. Qingxiong, and M. Pollefeys. Real-time

plane-sweeping stereo with multiple sweeping directions. In IEEE Conference on

Computer Vision and Pattern Recognition, pages 1–8, Jun 2007.

[65] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the

kitti vision benchmark suite. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 3354–3361, Jun 2012.

[66] A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin. In Bayesian

Data Analysis. Florida : CRC Press, 2004.

[67] E. Gheorghiu and C. J. Erkelens. Spatial-scale interaction in human stereoscopic

vision in response to sustained and transient stimuli. Vision Research, 44(6):563–

575, Mar 2004.

[68] V. Granville, M. Krivanek, and J.P. Rasson. Simulated annealing: a proof of

convergence. IEEE Transactions on Pattern Analysis and Machine Intelligence,

16(6):652–656, Jun 1994.

Bibliography 279

[69] M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hierarchical graph-

based video segmentation. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 2141–2148, Jun 2010.

[70] K. Gunhee and E.P. Xing. On multiple foreground cosegmentation. In IEEE

Conference on Computer Vision and Pattern Recognition, pages 837–844, Jun 2012.

[71] H. Han, H. Jung, H. Eom, and H. Yeom. Scatter-gather-merge: An efficient star-

join query processing algorithm for data-parallel frameworks. Cluster Computing,

14(2):183–197, Jun 2011.

[72] N. Harbi and Y. Gotoh. Spatio-temporal human body segmentation from video

stream. In International Conference on Computer Analysis of Images and Patterns,

volume 8047, pages 78–85. Springer, 2013.

[73] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and P. Sander. Rela-

tional joins on graphics processors. In ACM SIGMOD International Conference on

Management of Data, pages 511–524, Jun 2008.

[74] K. He, J. Sun, and X. Tang. Guided image filtering. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 35(6):1397–1409, Jun 2013.

[75] M. A. Helala, K. Q. Pu, and F. Z. Qureshi. Road boundary detection in challenging

scenarios. In IEEE Conference on Advanced Video and Signal-Based Surveillance,

pages 428–433, Sep 2012.

[76] M. A. Helala, K. Q. Pu, and F. Z. Qureshi. A stream algebra for computer vi-

sion pipelines. In IEEE Conference on Computer Vision and Pattern Recognition

Workshops, pages 800–807, Jun 2014.

Bibliography 280

[77] M. A. Helala, K. Q. Pu, and F. Z. Qureshi. Towards efficient feedback control

in streaming computer vision pipelines. In Asian Conference on Computer Vision

Workshops, pages 314–329, Nov 2014.

[78] M. A. Helala, K. Q. Pu, and F. Z. Qureshi. A formal algebra implementation for

distributed image and video stream processing. In International Conference on

Distributed Smart Camera, pages 84–91, Sep 2016.

[79] M. A. Helala and F. Z. Qureshi. Accelerating cost volume filtering using salient

subvolumes and robust occlusion handling. In Asian Conference on Computer

Vision, pages 316–331, Jun 2014.

[80] M. A. Helala and F. Z. Qureshi. Fast estimation of large displacement optical flow

using dominant motion patterns & sub-volume patchmatch filtering. In Conference

on Computer and Robot Vision, pages 64–71, May 2017.

[81] M. A. Helala, F. Z. Qureshi, and K. Q. Pu. Automatic parsing of lane and road

boundaries in challenging traffic scenes. Journal of Electronic Imaging, 24(5):53–20,

Oct 2015.

[82] M. A. Helala, M. Selim, and H. Zayed. A content based image retrieval approach

based on principal regions detection. International Journal of Computer Science

Issues, 9(1):204–213, Jul 2012.

[83] M. A. Helala, L. A. Zarrabeitia, and F. Z. Qureshi. Mosaic of near ground uav

videos under parallax effects. In International Conference on Distributed Smart

Cameras, pages 1–6, Oct 2012.

[84] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury. Feedback Control of Computing

Systems. John Wiley & Sons, 2004.

Bibliography 281

[85] A.B. Hillel, R. Lerner, D. Levi, and G. Raz. Recent progress in road and lane

detection: a survey. Machine Vision and Applications, 25(3):727–745, Apr 2014.

[86] H. Hirschmuller, P. R. Innocent, and J. Garibaldi. Real-time correlation-based

stereo vision with reduced border errors. International Journal of Computer Vision,

47(1):229–246, Apr 2002.

[87] H. Hirschmuller and D. Scharstein. Evaluation of cost functions for stereo matching.

In IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8, Jun

2007.

[88] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[89] Berthold K. P. Horn and Brian G. Schunck. Determining optical flow. Artificial

Intelligence, 17(1):185–203, Aug 1981.

[90] A. Hosni, M. Bleyer, M. Gelautz, and C. Rhemann. Local stereo matching using

geodesic support weights. In IEEE International Conference on Image Processing,

pages 2093–2096, Nov 2009.

[91] A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume

filtering for visual correspondence and beyond. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 25(2):504–511, Feb 2013.

[92] Y. Hu, R. Song, and Y. Li. Efficient coarse-to-fine patchmatch for large displace-

ment optical flow. In IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 5704–5712, Jun 2016.

[93] F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization

for general algorithm configuration. In International Conference on Learning and

Intelligent Optimization, pages 507–523, Jan 2011.

Bibliography 282

[94] F. Hutter, H. Hoos, and K. Leyton-Brown. An evaluation of sequential model-based

optimization for expensive blackbox functions. In Annual Conference Companion

on Genetic and Evolutionary Computation, pages 1209–1216, 2013.

[95] F. Hutter, H. Hoos, K. Leyton-Brown, and K. Murphy. Time-bounded sequential

parameter optimization. In International Conference on Learning and Intelligent

Optimization, pages 281–298, Jan 2010.

[96] F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stützle. Paramils: An automatic

algorithm configuration framework. Journal of Artificial Intelligence Research,

36(1):267–306, Sep 2009.

[97] F. Hutter, H. Hoos, and T. Stützle. Automatic algorithm configuration based on

local search. In National Conference on Artificial Intelligence, volume 2, pages

1152–1157, Jul 2007.

[98] J. Supancic III and D. Ramanan. Self-paced learning for long-term tracking. In

IEEE Conference on Computer Vision and Pattern Recognition, pages 2379–2386,

Columbus, Ohio 2013.

[99] H. Li J. Yang. Dense, accurate optical flow estimation with piecewise parametric

model. In IEEE Conference on Computer Vision and Pattern Recognition, pages

1019–1027, Jun 2015.

[100] P. Janert. Feedback Control for Computer Systems. O’Reilly Media, Inc., 2013.

[101] D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of expensive

black-box functions. Journal of Global Optimization, 13(4):455–492, Dec 1998.

[102] K. Kapitanova, S. H. Son, W. Kang, and W. T. Kim. Modeling and

analyzing real-time data streams. In IEEE International Symposium on

Bibliography 283

Object/Component/Service-Oriented Real-Time Distributed Computing, pages 91–

98, March 2011.

[103] V. Kastrinaki, M. Zervakis, and K. Kalaitzakis. A survey of video processing

techniques for traffic applications. Image and Vision Computing, 21(4):359–381,

Apr 2003.

[104] G. Kim and E.P. Xing. On multiple foreground cosegmentation. In IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages 837–844, Jun 2012.

[105] G. Kim and E.P. Xing. Jointly aligning and segmenting multiple web photo streams

for the inference of collective photo storylines. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 620–627, Jun 2013.

[106] K. Kim, T.H. Chalidabhongse, D. Harwood, and L. Davis. Background modeling

and subtraction by codebook construction. In IEEE International Conference on

Image Processing, volume 5, pages 3061–3064, Oct 2004.

[107] Amazon Kinesis. aws.amazon.com/kinesis/. Accessed: 2014-02-27.

[108] P. Kisilev and D. Freedman. Parameter tuning by pairwise preferences. In British

Machine Vision Conference, pages 4.1–4.11, Sep 2010.

[109] H. Kong, J. Audibert, and J. Ponce. General road detection from a single image.

IEEE Transactions on Image Processing, 19(8):2211–2220, Aug 2010.

[110] S. Korman and S. Avidan. Coherency sensitive hashing. In International Confer-

ence on Computer Vision, pages 1607–1614, Nov 2011.

[111] P. Kranen, I. Assent, C. Baldauf, and T. Seidl. Self-adaptive anytime stream

clustering. In IEEE International Conference on Data Mining, pages 249–258, Dec

2009.

aws.amazon.com/kinesis/

Bibliography 284

[112] K. Kyungnam, T. Chalidabhongse, D. Harwood, and L. Davis. Background model-

ing and subtraction by codebook construction. In IEEE International Conference

on Image Processing, volume 5, pages 3061–3064, Oct 2004.

[113] A. Levinshtein, A. Stere, K. Kutulakos, D. Fleet, S. Dickinsonl, and K. Siddiqi.

Turbopixels: Fast superpixels using geometric flows. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 31(12):2290–2297, Dec 2009.

[114] X. Li, Z. Jia, and R. Zhang. Feedback control real-time scheduling over data

streams. Journal of Computational Information Systems, 6:1051–1059, 04 2010.

[115] E. Liarou, R. Goncalves, and S. Idreos. Exploiting the power of relational databases

for efficient stream processing. In International Conference on Extending Database

Technology: Advances in Database Technology, pages 323–334, Mar 2009.

[116] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W.T. Freeman. Sift flow: Dense cor-

respondence across different scenes. In European Conference on Computer Vision,

pages 28–42, Oct 2008.

[117] M. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa. Entropy rate superpixel

segmentation. In Proc. of IEEE CVPR, pages 2097–2104, Jun 2011.

[118] D.G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2):91–110, 2004.

[119] C.C. Loy, T.M. Hospedales, T. Xiang, and S. Gong. Stream-based joint exploration-

exploitation active learning. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 1560–1567, Jun 2012.

[120] C. Lu, J. Shi, and J. Jia. Online robust dictionary learning. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 415–422, Jun 2013.

Bibliography 285

[121] J. Lu, K. Shi, D. Min, L. Lin, and M.N. Do. Cross-based local multipoint filtering.

In IEEE Conference on Computer Vision and Pattern Recognition, pages 430–437,

Jun 2012.

[122] J. Lu, H. Yang, D. Min, and M. N. Do. Patch match filter: Efficient edge-aware

filtering meets randomized search for fast correspondence field estimation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, PP(99):1854–1861, Jul

2016.

[123] J. Lu, H. Yang, D. Min, and M.N. Do. Patch match filter: Efficient edge-aware

filtering meets randomized search for fast correspondence field estimation. In IEEE

Conference on Computer Vision and Pattern Recognition, pages 1854–1861, Jun

2013.

[124] D. Lucas and T. Kanade. An iterative image registration technique with an appli-

cation to stereo vision. In International Joint Conferences on Artificial Intelligence,

volume 2, pages 674–679, Aug 1981.

[125] C. Rhemann M. Bleyer and C. Rother. Patchmatch stereo - stereo matching with

slanted support windows. In British Machine Vision Conference, pages 14.1–14.11,

Sep 2011.

[126] T.E. Marlin. Process Control: Designing Processes and Control Systems for Dy-

namic Performance. Chemical Engineering Series. McGraw-Hill, 1995.

[127] M. D. McKay, R. J. Beckman, and W. J. Conover. Comparison of three methods

for selecting values of input variables in the analysis of output from a computer

code. Technometrics, 21(2):239–245, Apr 1979.

[128] A.H. Meghdadi and P. Irani. Interactive exploration of surveillance video through

action shot summarization and trajectory visualization. IEEE Transactions on

Visualization and Computer Graphics, 19(12):2119–2128, Dec 2013.

Bibliography 286

[129] X. Mei, X. Sun, W. Dong, H. Wang, and X. Zhang. Segment-tree based cost

aggregation for stereo matching. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 313–320, June 2013.

[130] J. Melo, A. Naftel, A. Bernardino, and J. Santos-Victor. Detection and classification

of highway lanes using vehicle motion trajectories. IEEE Transactions on Intelligent

Transportation Systems, 7(2):188–200, Jun 2006.

[131] D. Min, J. Lu, and M.N. Do. A revisit to cost aggregation in stereo matching: How

far can we reduce its computational redundancy? In International Conference on

Computer Vision, pages 1567–1574, Nov 2011.

[132] D. Min and K. Sohn. Cost aggregation and occlusion handling with WLS in stereo

matching. IEEE Transactions on Image Processing, 17(8):1431–1442, Aug 2008.

[133] MPI-Sintel Optical Flow Benchmark. http://sintel.is.tue.mpg.de/results.

Accessed: 2017-01-24.

[134] J. Pal, J. J. Weinman, L. C. Tran, and D. Scharstein. On learning conditional

random fields for stereo. International Journal of Computer Vision, 99(3):319–

337, Sep 2012.

[135] S. Paris and F. Durand. A topological approach to hierarchical segmentation using

mean shift. In IEEE Conference on Computer Vision and Pattern Recognition,

pages 1–8, Jun 2007.

[136] S. Paris, P. Kornprobst, J. Tumblin, and F. Durand. Bilateral filtering: Theory and

applications. Foundations and Trends in Computer Graphics and Vision, 4(1):1–73,

2009.

http://sintel.is.tue.mpg.de/results

Bibliography 287

[137] Nurjahan Parvin. Robust curved road boundary identification using hierarchical

clustering. Master’s thesis, University of Ontario Institute of Technology, Oshawa,

Canada, 2013.

[138] A. Pinar and C. Aykanat. Fast optimal load balancing algorithms for 1d partition-

ing. Journal of Parallel and Distributed Computing, 64(8):974–996, Aug 2004.

[139] S. Randriamasy and A. Gagalowicz. Region based stereo matching oriented image

processing. In IEEE Conference on Computer Vision and Pattern Recognition,

pages 736–737, Jun 1991.

[140] C Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT

Press, Jan 2006.

[141] X. Ren and J. Malik. Learning a classification model for segmentation. In Proc. of

IEEE ICCV, pages 10–17, Oct 2003.

[142] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep Convolutional

Matching. Technical report, INRIA, 2015.

[143] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: Edge-

Preserving Interpolation of Correspondences for Optical Flow. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 1164–1172, Jun 2015.

[144] C. Richardt, D. Orr, I. Davies, A. Criminisi, and N.A. Dodgson. Real-time spa-

tiotemporal stereo matching using the dual-cross-bilateral grid. In European Con-

ference on Computer Vision, volume 6313, pages 510–523. 2010.

[145] M. S. Ryoo. Human activity prediction: Early recognition of ongoing activities

from streaming videos. In International Conference on Computer Vision, pages

1036–1043, Nov 2011.

Bibliography 288

[146] R.K. Satzoda and M.M. Trivedi. Selective salient feature based lane analysis. In

International IEEE Conference on Intelligent Transportation Systems, pages 1906–

1911, Oct 2013.

[147] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo

correspondence algorithms. International Journal of Computer Vision, 47(1-3):7–

42, Apr 2002.

[148] R. Schuster, R. Mörzinger, W. Haas, H. Grabner, and L. Van Gool. Real-time

detection of unusual regions in image streams. In International Conference on

Multimedia, pages 1307–1310, Oct 2010.

[149] J. Sherrah. Learning to adapt: A method for automatic tuning of algorithm pa-

rameters. In International Conference on Advanced Concepts for Intelligent Vision

Systems, pages 414–425, Dec 2010.

[150] M. Sizintsev and R. P. Wildes. Coarse-to-fine stereo vision with accurate 3d bound-

aries. Image and Vision Computing, 28(3):352–366, Mar 2010.

[151] A. Soumelidis, G. Kovacs, J. Bokor, P. Gaspar, L. Palkovics, and L. Gianone.

Automatic detection of the lane departure of vehicles. In IFAC Symposium on

Transportation Systems, pages 1045–50, Jun 1997.

[152] G. Stefănescu. Network Algebra. Springer-Verlag New York, Inc., Secaucus, NJ,

USA, 2000.

[153] F. Steinbrücker, T. Pock, and D. Cremers. Large displacement optical flow compu-

tation without warping. In International Conference on Computer Vision, pages

1609–1614, Sep 2009.

[154] B. Stewart, I. Reading, M. Thomson, T. Binnie, K. Dickinson, and C. Wan. Adap-

tive lane finding in road traffic image analysis. In IEEE International Conference

Bibliography 289

on Road Traffic Monitoring and Control, pages 133–136, Napier Univ. Edinburgh,

Apr. 1994.

[155] J. Sun. Computing nearest-neighbor fields via propagation-assisted kd-trees. In

IEEE Conference on Computer Vision and Pattern Recognition, pages 111–118,

Jun 2012.

[156] J. Sun, Y. Li, S.B. Kang, and Heung-Yeung Shum. Symmetric stereo matching

for occlusion handling. In IEEE Conference on Computer Vision and Pattern

Recognition, volume 2, pages 399–406, Jun 2005.

[157] J. Sun, N.N. Zheng, and H.Y. Shum. Stereo matching using belief propagation.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(7):787–800,

Jul 2003.

[158] D. Tabernik, L. Čehovin, M. Kristan, M. Boben, and A. Leonardis. A web-service

for object detection using hierarchical models. In International Conference on

Computer Vision Systems, pages 93–102, Jul 2013.

[159] T. Taniai, Y. Matsushita, and T. Naemura. Graph cut based continuous stereo

matching using locally shared labels. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 1613–1620, Jun 2014.

[160] M. Tao, J. Bai, P. Kohli, and S. Paris. Simpleflow: A non-iterative, sublinear

optical flow algorithm. Computer Graphics Forum, 31(2pt1):345–353, May 2012.

[161] R. Timofte and L.V. Gool. Sparse flow: Sparse matching for small to large dis-

placement optical flow. In EEE Winter Conference on Applications of Computer

Vision, pages 1100–1106, Jan 2015.

Bibliography 290

[162] B. Tippetts, D. Lee, K. Lillywhite, and J. Archibald. Review of stereo vision

algorithms and their suitability for resource-limited systems. Journal of Real-Time

Image Processing, 11(1):5–25, Jan 2013.

[163] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addimanda. Classification and

evaluation of cost aggregation methods for stereo correspondence. In IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 1–8, Jun 2008.

[164] Y. Tu, M. Hefeeda, Y. Xia, S. Prabhakar, and S. Liu. Control-based quality adapta-

tion in data stream management systems. In International Conference on Database

and Expert Systems Applications, pages 746–755, Aug 2005.

[165] Y. Tu, S. Liu, S. Prabhakar, B. Yao, and W. Schroeder. Using control theory for

load shedding in data stream management. In IEEE International Conference on

Data Engineering, pages 1491–1492, Apr 2007.

[166] S. Tulyakov, A. Ivanov, and F. Fleuret. Weakly supervised learning of deep metrics

for stereo reconstruction. In International Conference on Computer Vision, pages

1348–1357, Oct 2017.

[167] ultrahdwallpapers. Cat Staring Wallpaper. http://www.ultrahdwallpapers.

net/animals/cat_staring-wallpaper-3840x2160. [Online; accessed 11-July-

2015].

[168] D. Wang, E. A. Rundensteiner, and T. Richard I. Ellison. Active complex event

processing over event streams. Proceedings of the Very Large Data Base Endow-

ment, 4(10):634–645, Jul 2011.

[169] Y. Wang, E. Khwang Teoh, and D. Shen. Lane detection and tracking using b-

snake. Image and Vision Computing, 22(4):269–280, Apr 2004.

http://www.ultrahdwallpapers.net/animals/cat_staring-wallpaper-3840x2160
http://www.ultrahdwallpapers.net/animals/cat_staring-wallpaper-3840x2160

Bibliography 291

[170] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. Deepflow: Large displace-

ment optical flow with deep matching. In International Conference on Computer

Vision, pages 1385–1392, Dec 2013.

[171] Y. Weiss and W.T. Freeman. On the optimality of solutions of the max-product be-

lief propagation algorithm in arbitrary graphs. IEEE Transactions on Information

Theory, 47(2):723–735, Feb 2001.

[172] J. Winn and C. M. Bishop. Variational message passing. Journal of Machine

Learning Research, 6:661–694, Dec 2005.

[173] J. Wulff and M.J. Black. Efficient sparse-to-dense optical flow estimation using a

learned basis and layers. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 120–130, Jun 2015.

[174] L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estima-

tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(9):1744–

1757, Sep 2012.

[175] C. Xuand, C. Xiong, and J.J. Corso. Streaming hierarchical video segmentation.

In European Conference on Computer Vision, volume VI, pages 626–639, 2012.

[176] J. Yang, J. Luo, J. Yu, and T.S. Huang. Photo stream alignment and summarization

for collaborative photo collection and sharing. IEEE Transactions on Multimedia,

14(6):1642–1651, Dec 2012.

[177] Q. Yang, L. Wang, R. Yang, H. Stewenius, and D. Nister. Stereo matching with

color-weighted correlation, hierarchical belief propagation, and occlusion handling.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(3):492–504,

March 2009.

Bibliography 292

[178] S. Yenikaya, G. Yenikaya, and E. Düven. Keeping the vehicle on the road: A survey

on on-road lane detection systems. ACM Computing Surveys, 46(1):2:1–2:43, Jul

2013.

[179] K. Yoon and I. S. Kweon. Adaptive support-weight approach for correspon-

dence search. IEEE Transactions on Pattern Analysis and Machine Intelligence,

28(4):650–656, Apr 2006.

[180] K. Yu, Y. Zhou, D. Li, Z. Zhang, and K. Huang. A large-scale distributed video

parsing and evaluation platform. In Chinese Conference on Intelligent Visual

Surveillance, pages 37–43, Oct 2016.

[181] S. Yu and J. Shi. Multiclass spectral clustering. In International Conference on

Computer Vision, volume 1, pages 313–319, Nice, France, Oct 2003.

[182] R. Zabih and J. Woodfill. Non-parametric local transforms for computing visual

correspondence. In European Conference on Computer Vision, pages 151–158,

Berlin, Heidelberg, May 1994.

[183] H. Zhang, J. Yan, and Y. Kou. Efficient online surveillance video processing based

on spark framework. In International Conference on Big Data Computing and

Communications, pages 309–318, Jul 2016.

[184] K. Zhang, Y. Fang, D. Min, L. Sun, S. Yang, S. Yan, and Q. Tian. Cross-scale

cost aggregation for stereo matching. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 1590–1597, Jun 2014.

[185] K. Zhang, Y. Fang, D. Min, L. Sun, S. Yang, S. Yan, and Q. Tian. Cross-scale

cost aggregation for stereo matching. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 1590–1597, Jun 2014.

Bibliography 293

[186] Qi Zhang, Li Xu, and Jiaya Jia. 100+ times faster Weighted Median Filter (WMF).

In IEEE Conference on Computer Vision and Pattern Recognition, pages 2830–

2837, June 2014.

[187] W. Zhang, S. Zeng, Dequan Wang, and X. Xue. Weakly supervised semantic

segmentation for social images. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 2718–2726, June 2015.

[188] Bin Zhao, Li Fei-Fei, and E.P. Xing. Online detection of unusual events in videos

via dynamic sparse coding. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 3313–3320, Jun 2011.

[189] S. Zhou, J. Xi, J. Gong, G. Xiong, and H. Chen. A novel lane detection based on

geometrical model and gabor filter. In IEEE Intelligent Vehicles Symposium, pages

59–64, Jun 2010.

[190] Z. Zhou. Ensemble Methods: Foundations and Algorithms. Chapman & Hall/CRC,

1st edition, 2012.

	Introduction
	Problem Statement
	Stream Algebra
	Building Efficient Online Algorithms

	Contributions
	List of Publications

	Introduction
	Background
	Stream Algebra
	Feedback Control in Data-Stream Systems

	Computer Vision Functionals
	Stereo Vision
	Optical Flow
	Road-Boundary Detection in Traffic-Video Surveillance

	Parameter Tuning

	Scalable Computer Vision Systems
	Stream Algebra
	Notation
	First-order Operators
	Rate-control Operators
	Higher-order Operators
	Examples

	Feedback Control for Streaming Computer Vision Pipelines
	Algebraic Description of Feedback Control
	Examples

	Discussion
	Algebra Implementation
	Algebra Implementation in Go Language
	Building Pipelines Using the Algebra Implementation

	Efficient Computer Vision Functionals: Pixel Labelling
	Introducing Pixel-Labelling Problems
	Cost-Volume Filtering
	Curse of the Label Search Space
	Efficient Traversal of Large and Continuous Label Spaces

	Selecting Salient Sub-volumes
	Feature-based Sub-volumes
	Segmentation-based Sub-volumes

	Coarse-to-fine Sub-volumes
	Patch-Match for Sub-volume Filtering
	Algorithm
	Complexity Analysis

	Occlusion Handling and Gap Filling
	Applications
	Stereo Vision
	Optical Flow

	Experimental Results
	Stereo Vision
	Optical Flow

	Limitations
	Concurrent Streaming Implementation

	Efficient Computer Vision Functionals: Traffic Surveillance
	Road-boundary Detection
	Superpixel Segmentation
	Contour Approximation
	Online Hierarchical Clustering
	Confidence Assignment
	Pairwise Ranking

	Experimental Results
	Dataset 1
	Dataset 2
	Sensitivity Analysis

	Discussion
	Concurrent Streaming Implementation
	Description Using Algebra
	Implementation

	Performance Tuning of Large-Scale Computer Vision Systems
	Problem Statement
	Feedback Control Using Time-Bounded Sequential Parameter Optimization
	Experimental Results
	Case Study
	Experimental Evaluation
	Discussion

	Conclusion
	Summary of Contributions
	Future Directions

	Appendix Supplementary Materials For the Sparse Cost-volume Filtering Approach
	Appendix Gaussian-Process Regression
	Appendix Go Code for the Algebra Implementation
	alg.go
	exgraph.go
	messages.go
	consts.go

	Bibliography

