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Abstract

We present a new framework for capturing videos using
sensor-rich mobile devices, such as smartphones, tablets,
etc. Many of today’s mobile devices are equipped with a va-
riety of sensors, including accelerometers, magnetometers
and gyroscopes, which are rarely used during video cap-
ture for anything more than video stabilization. We demon-
strate that these sensors, together with the information that
can be extracted from the recorded video via computer vi-
sion techniques, provide a rich source of data that can be
leveraged to automatically edit and “clean up” the captured
video. Sensor data, for example, can be used to identify un-
desirable video segments that are then hidden from view.
We showcase an Android video recording app that captures
sensor data during video recording and is capable of au-
tomatically constructing final-cuts from the recorded video.
The app uses the captured sensor data plus computer vision
algorithms, such as focus analysis, face detection, etc., to
filter out undesirable segments and keep visually appealing
portions of the captured video to create a final cut. We also
show how information from various sensors and computer
vision routines can be combined to create different final cuts
with little or no user input.

1. Introduction

Camera-equipped mobile devices are increasingly com-
mon, and these devices have transformed how we interact
with our environment and with each other. Our access to
camera-equipped mobile devices has increased our ability
to capture our lives in images and videos by such a large
degree, it is no wonder that the Oxford English Dictionary
declared 2013 the year of the selfie. If the current trend
holds, we will only see an increase in the volume of im-
ages and videos captured by individuals using their mobile
devices. The sheer volume of images and videos being cap-
tured is quickly becoming overwhelming, and we urgently
need new techniques for managing, archiving, curating, and
presenting the imagery captured by these devices. This
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paper proposes a framework for summarizing and “clean-
ing up” raw videos captured through mobile devices with
little or no human intervention. Computer vision techniques
and raw readings from accelerometer, magnetometer, and
other mobile device sensors work in tandem to construct an
edited final-cut of any recorded video containing only visu-
ally appealing and informative bits of the raw video. Video
editing is an extremely tedious process, and this paper pro-
poses a first-of-its-kind system that uses sensor data and
image processing for the purpose of automatically editing
videos captured using mobile devices.

Existing video summarization schemes to a large extent
have focused on visual data, i.e., information that can be ex-
tracted from the video through image analysis and computer
vision techniques. Chen et al. [3], for example, use image
analysis to partition a video into segments based upon their
“interestingness.” Similarly, Hua et al. [6] use computer vi-
sion techniques to select “desirable” segments from a video
and match these to music. Their method also adds transi-
tions between the selected segments to construct a visually
pleasing final-cut. Non-visual data—such as accelerome-
ter, magnetometer and gyroscope readings, etc.—is either
unavailable for particular videos or is ignored during video
summarization using conventional methods. To the best of
our knowledge, existing mobile video recording apps do
not attempt to save sensor data (from accelerometers, mag-
netometers, gyroscopes, etc.) during video capture. We
present an Android video recording app that saves sensor
data in combination with relevant timing information dur-
ing video capture. This timing information is later used
during temporal alignment of video and sensor streams.
We also propose a video summarization framework that ex-
ploits both visual (i.e., derived from the video stream us-
ing image analysis or computer vision techniques) and non-
visual (sensor readings from accelerometers, gyroscopes,
etc.) data to automatically edit the captured video into a
shorter—and hopefully more pleasing—final-cut.

Combining other sources of data with computer vision
techniques for video summarization appears beneficial and
can lead to significant computational savings—computer
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Figure 1. A high-level overview of the capabilities of the proposed system. Frames from the original video, along with time-series plots of
both image and sensor data recorded over the course of the video, are shown on the left. The images on the right represent three possible
automatically-obtained final-cuts of the same video. These cuts are constructed using different combinations of sensor and visual data

streams.

vision techniques typically have high computational re-
quirements. Using computer vision methods to detect cam-
era motion, for example, requires optical flow estimation,
while similar results can be obtained at a fraction of the
computational cost by using accelerometer data. Compu-
tational savings aside, sensor data can also be used to im-
prove both the performance and the accuracy of image anal-
ysis routines. Advantages obtained using sensor data read-
ily available from mobile devices make a strong case for ex-
ploring video summarization methods that can leverage data
available from the many sensors embedded in these devices
and image analysis techniques typically used for these pur-
poses. The work presented here is a step in that direction.

1.1. Contributions

We present an Android video recording/summarization
app that combines computer vision techniques with ac-
celerometer, magnetometer and gyroscope data for the pur-
poses of video summarization and ‘“clean up.” Figure 1
provides a high-level overview of our system. The pro-
posed system is able to extract device context—i.e., its
orientation, movement, etc.—from the sensor data that is
recorded alongside the video. The sensor readings can be
used to segment the recorded video into undesirable and
desirable regions. For example, accelerometer data can
identify times when the mobile device is undergoing ex-
treme, uncontrolled motion. There is a good chance that
any video recorded under these conditions will exhibit mo-
tion blur. We can, of course, use computer vision tech-
niques to identify segments exhibiting strong motion blur;
however, image-based motion blur analysis is computation-
ally expensive. The availability of sensor data also enables
our system to apply computationally costly computer vision
analysis to more promising regions of the recorded video.

Our system comprises a number of video segmentation
routines capable of splitting a recorded video into segments
based upon their desirability. We define desirability loosely
as the visual appeal of a video segment, so a video seg-
ment with high desirability score has a greater chance of
making it into the final cut. Our video segmentation rou-
tines use one or more visual and non-visual (sensor) streams
during video segmentation. For example, an accelerome-
ter video segmentation routine uses accelerometer readings
for video segmentation. Similarly, a magnetometer video
segmentation routine relies upon magnetometer sensor data
for constructing and ranking video segments. We have also
implemented a face detection video segmentation routine
that relies upon computer vision techniques to segment and
rank video based upon whether or not a face is visible in
a particular segment of the video. Video segmentation rou-
tines can be easily added or removed from our system, mak-
ing the proposed system both flexible and extensible. Each
video segmentation routine returns a list of video segments
ranked according to their desirability. We also propose a
segment selection method that selects the top ranked seg-
ments to construct the (shorter) final-cut (summary of the
video). Our system allows both interactive and fully au-
tomated operation. In interactive mode, the list of ranked
video proposals is presented to the user, who can decide
which of the regions should make it into the final-cut. The
app also exposes a fully manual mode where the user is re-
sponsible for “editing” the video, manually placing the split
points for each desired segment in the final video.

We demonstrate the proposed system, i.e., our Android
app (Figure 2), on a variety of videos and show that the sys-
tem is able to discard “undesirable” regions of the recorded
video by combining 1) accelerometer & magnetometer data,
2) gyroscope readings, 3) face detection, 4) focus analysis,
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Figure 2. A screenshot of our Android app. The recorded video is
segmented into 7 portions (seen on the right). The red segments
will be discarded in the the final-cut. The green segments will be
used to construct the final-cut. The blue segment is currently being
displayed.

and 5) optical flow computation. It is worth bearing in mind
that we cannot use our system on pre-recorded videos where
the sensor data is not available. The primary focus of this
work is using sensor data that is saved at the same time that
the video is being recorded, and we were unable to find any
dataset suitable for our purposes.

2. Previous Work

Current video summarization schemes mostly rely upon
computer vision and image analysis [3, 6]. These ap-
proaches typically have high computational requirements,
which render these approaches unsuitable for mobile de-
ployment. Otsuka et al. [10] presented a method for clas-
sifying sports video using audio information. This method
avoids the computationally expensive processing associated
with image analysis. The primary drawback of their ap-
proach is that in general it is not always possible to identify
the interesting bits of a video by relying purely on the au-
dio information. Still, this approach shows that it is indeed
possible to summarize a video by identifying its interesting
bits using non-visual data.

Within the context of mobile devices, Siewiorek et al.
[16] have shown that it is possible to extract the “context”
of a mobile devices—i.e., is it lying face down on a flat sur-
face, is it being used to capture an image, etc.—by using
onboard sensors. Similarly, Teng et al. [17] are able to de-
termine the context by using only GPS and “shake” sensors
available on mobile devices. Others have explored the use
of non-visual data for annotation purposes. Shen et al. [15]
and Zhang et al. [20], for example, use GPS data to tag dif-
ferent portions of the video. We currently do not use GPS
information. It is, however, straightfoward to add a routine
that will use location information for video segmentation
and tagging.

Ahanger and Little have studied video composition
methods for constructing a video summary by combining

video segments [1]. This approach bears resemble to the
method presented here. Our method composes the final-cut
by selecting from a ranked set of video segments. These
video segments are computed by video segmentation rou-
tines that use both visual and non-visual data. Unlike pre-
vious approaches, the method presented here uses the “con-
text” of a mobile device (as inferred by relying upon on-
board sensors), the information value of a video segment
(say the existence of a face), and the visual quality of a seg-
ment (whether or not it is in focus, etc.) to summarize the
recorded video into a final-cut. Our method is both flexible
and extensible, and we demonstrate our method on a mobile
device.

3. System Overview

Our system is realized as a collection of 1) data process-
ing, 2) video segmentation, and 3) video composition rou-
tines. New routines can be easily added to the system to
enhance its functionality. Data processing routines operate
upon one or more data streams and return a data stream.
Video segmentation routines are responsible for dividing
the recorded video into non-overlapping segments. The in-
put to video segmentation routines is a video and zero or
more data streams. We allow for 0 data streams to ac-
count for situations where a video segmentation routine re-
lies solely upon data that can be extracted from the input
video stream. Video composition routines are responsible
for picking the “best” segments to compose the final-cut.
We now describe the five aspects of our system: 1) sensor-
rich video recording, 2) sensor stream processing, 3) video
processing, 4) segmentation, and 5) final-cut composition.

3.1. Sensor-Rich Video Recording

We have implemented our system on a Google Nexus 5
smartphone, which runs Google’s Android operating sys-
tem. Android has no built-in support for storing both videos
and other sensor readings at the same time. Consequently,
we wrote custom routines capable of recording this sensor
data as videos are being saved. Our method assumes that
the video and sensor data is synchronized. The Android
API does not support sensor polling, but rather sensors push
a stream of data whenever new readings become available.
Similarly, there is no way to execute a piece of user code for
each frame of the video during capture; videos are encoded
on-the-fly and it is not possible to tie an event to “frame
capture.” Our method is able to achieve frame-level syn-
chronization by relying upon start and end times associated
with the recorded sensor streams and video clips.

3.2. Data Processing Routines

These routines deal with readings from sensors, such as
accelerometers, magnetometers, gyroscopes, and cameras.
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Figure 3. Accelerometer. Raw z, y, and z readings over time.
Time is along the horizontal axis.
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Figure 4. Orientation data. These plots show the raw yaw, pitch,
and roll values over time, with time along the horizontal axis.

We assume that different data streams are already tempo-
rally aligned (see above). We support a number of common
(frequency and time based) time-series analysis operations,
such as moving averages estimation, derivative and integra-
tion computations, wavelet transforms, and Fourier space
decomposition.

3.2.1 Accelerometer Data

Readings from an accelerometer, which measures forces
acting on a device, can help us locate portions of videos
exhibiting large motions (see Figure 3). These regions are
tagged as candidates for removal. Accelerometer readings
are also combined with other sensors to determine the ori-
entation of the device with respect to the gravity vector.

3.2.2 Device Orientation and Gravity Vector

Figure 4 shows Roll (R), Pitch (P), and Yaw (Y) values
(for the mobile device) calculated using readings from ac-
celerometer, magnetometer, and gyroscope data. RPY val-
ues can be used to infer the orientation of the device and
the direction of the gravity vector. This data can then detect
regions of videos where the device has gone through large
orientation changes. These regions sometimes correspond
to events, such as placing the mobile device on a flat sur-
face or putting it in one’s pocket. Orientation information
is also used to determine whether or not a video segment is
recorded in portrait or landscape mode.

The Android platform computes RPY values using read-
ings from the accelerometer and magnetometer. We no-
ticed that by using only accelerometer and magnetometer—
which measures Earth’s magnetic field and acts as a
compass—results in jittery estimates for the device’s orien-
tation; small forces registered by the accelerometer throw
off the computations. An alternate approach is to use read-
ings from a gyroscope, which measures the instantaneous
angular velocity of the device, to compute the orientation
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Figure 5. Optical flow data computed over the same time frame as
the accelerometer data shown in Figure 3. Optical flow can only
be used to compute the x and the y component. Time is along the
horizontal axis.

of the device—readings from the gyroscope are integrated
over time to estimate the current orientation of the device.
This too leads to inaccurate estimates, as small errors at
each instant accumulate over time.

We combine readings from accelerometer, magnetome-
ter, and gyroscope to compute the orientation and gravity
direction vector of the mobile device [19]. Specifically, we
use a complementary filter to filter high frequency signal
from gyroscope data and filter low frequency component
from accelerometer data [14]. A low-pass filter on gyro-
scope readings accounts for the drift due to integration over
time; whereas, a high-pass filter on accelerometer data is
able to account for sudden, short-duration forces applied on
the mobile device.

3.3. Video Processing

We have implemented the following state-of-the-art
computer vision routines for identifying promising seg-
ments of the recorded video: 1) frame brightness estima-
tion; 2) optical flow estimation; 3) face detection; 4) salient
face recognition; and 5) focus analysis. We now briefly ex-
plain the role of these routines in our system. For technical
details, we refer the reader to the relevant computer vision
literature.

3.3.1 Optical Flow

Optical flow estimation is a first step in many subsequent
computer vision routines, such as activity recognition [5].
In our case, it is possible to use optical flow to determine
the degree of “shake” of the device during video record-
ing. When using optical flow, however, special care has
to be taken to separate camera motion from the movement
present in the scene. In our experiments we have observed
that accelerometer data is a better indicator of camera move-
ment than optical flow data (average optical flow vector for
a given frame). Optical flow data, on the other hand, is bet-
ter suited to estimate fine-grained scene motion. Figures 5
and 3 show optical flow (z and y) and accelerometer data
(z, y and z) data for the same video, respectively.

3.3.2 Face Detection

Face detection is used to identify video portions contain-
ing faces. We have implemented both HARR and LBP [2]
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Figure 6. Focus analysis results for a video using the method de-
scribed in [11]. Time is along the horizontal axis.

based face detection routines. Face detection routines tag
each frame I; of the recorded video V' with the set of bound-
ing boxes B; containing faces. The set B; is empty if no
faces are found in I;. Bounding boxes with areas less than a
predefined threshold are also discarded and not considered
for B;.

3.3.3 Focus Analysis

Focus analysis is commonly used to determine the “visual
quality” of an image. An image that is completely out-of-
focus is typically deemed of inferior quality. On the con-
trary, images that are in sharp focus or where the main ob-
ject is in focus are considered aesthetically pleasing. The
focus analysis routine assigns a value (between 0 and 1) to
each frame I; of the video. Videos recorded with mobile
devices exhibit a variety of visual artifacts, such as extreme
motion, increased noise due to the lack of proper lighting,
high contrast, sudden changes in brightness, etc. To account
for these artifacts, we have implemented a large selection of
focus analysis algorithms for our purposes [11, 12, 13, 18]
(see Figure 6).

3.3.4 Salient Face Detection

Our system is able to detect salient faces in the video. Video
segments containing salient faces are then given more prior-
ity when constructing the final-cut. We have implemented
an unsupervised salient face detection method that does not
rely upon the existence of a face database. The detected
faces are encoded as Local Binary Patterns (LPB) [2] and
clustered using a combination of OpenCV’s face recogni-
tion code and hierarchical clustering. Cluster centres repre-
sent unique faces seen in the video. The membership size of
a cluster is used to identify the salient faces. By default, the
number of salient faces is determined automatically based
on membership size, but it can be provided as a parameter
in the case that a user has prior knowledge as to the ex-
pected number of unique clusters. This approach is simi-
lar to the one presented in [9]; however, we decided to use
LBP instead of SIFT features for encoding faces. LBP, we
found, were more robust to brightness changes observed in
our videos. The salient face detection routine tags frames
I; (of the recorded video) containing one or more salient
faces.

3.4. Video Segmentation

Each data and video processing routine returns an an-
notation stream, which stores the results of data/video pro-

cessing for each frame in the video. An orientation stream,
for example, will include device orientation data for each
frame of the recorded video. A face detection stream, on the
other hand, will include the number of faces found in each
frame of the video. Each stream is processed separately to
construct a non-overlapping partition of the recorded video.
Each stream uses a finite state machine to model friction
when partitioning the recorded video. Video frames are
processed in sequence, and stream data is used to decide
whether or not a video frame belongs to the current par-
tition; a new partition is initiated if this test fails. Friction
solves the problem of constructing a large number of (short-
duration) partitions in the case of a noisy source data stream.

To summarize, video segmentation generates a set of
non-overlapping partitions, one for data each stream. Each
partition defines a segmentation over the recorded video.
Each segment is then classified as “undesirable” or “desir-
able,” or assigned a score by using relevant stream infor-
mation. This information plays an important role during
final-cut composition.

3.5. Final-Cut Composition

Video segmentation returns a collection of sets of video
segments S = {51, 5, -+ ,5,}, where S; represents the
set of video segments from the i*" data/video stream. Each
segment s € S; is assigned a label “desirable” or “unde-
sirable” or a desirability score. It is easy to pull out sub-
sets of segments from S; consisting of all s that match a
user-defined criteria. For example, it is possible to pick out
all video segments from optical flow estimation stream that
exhibit small motion. Similarly, we can pick out in-focus
segments from the focus stream. The salient face detection
stream allows us to select all segments that contain one or
more salient faces.

Set operations, like union and intersection, can be used
to compose the final-cut given a collection of sets of video
segments that meet the user-defined criteria. Our Android
app supports three modes of operation. In the completely
automated mode, the system is able to compose the final-
cut by selecting highly ranked (or classified as “desirable”)
segments from S. In the semi-automated mode, the system
presents the list of segments along with their classification
or scores to the user. In this case the user decides which
of the segments should make it to the final-cut. It is pos-
sible to restrict the list of video segments presented to the
user based upon the streams used to construct those seg-
ments. For example, a user may only wish to use face de-
tection and focus streams for final-cut composition. In that
case, the user can choose to view segments constructed from
face detection and focus routines. The last and fully manual
mode requires the user to identify the partitions, construct
the segments, and select the segments for the final-cut.



4. Results and Evaluation

The primary hypothesis of this work is that non-visual
information recorded alongside a video can be exploited to
construct a shorter, cleaned-up final-cut of the video. As
mentioned previously, existing video summarization bench-
marks are not suitable for our purposes, since these datasets
do not contain readings from sensors (found in most of to-
day’s mobile devices), such as accelerometer, magnetome-
ter, and gyroscope. To test our hypothesis, we implemented
an Android video recording app that supports what we call
sensor-rich recording, meaning that data from available sen-
sors is also recorded alongside the video. We are able to use
this app to collect test data for our purposes.

Here, we evaluate the performance of our method on
three videos that are recorded using the Android app that we
have developed. We manually constructed visually pleasing
final-cuts for these videos. These cuts serve as our ground
truth. Next, we use our method to automatically construct
final-cuts by using one or more data (i.e., non-visual) and
video (visual) streams. For these results we use the follow-
ing five data streams: 1) D, (accelerometer z, y and z read-
ings); 2) D, (orientation roll, pitch and yaw values); 3) D4
(salient face detection); 4) Dy (focus analysis); and 5) D¢
(optical flow). We provide accuracy ¢ for the final-cuts, de-
fined as
tp + tTL

¢_%+n+m+h’

where t,, t,, fp and f, denote true positive, true nega-
tive, false positive and false negative segment lengths re-
spectively. The results demonstrate that the quality of the
summarization increases when we combine visual process-
ing with information gleaned from non-visual sensors.

We are cognizant of the fact that the ground truth for
these evaluations reflects our personal biases as to what con-
stitutes a visually appealing video segment. We plan to un-
dertake larger scale human studies in the future.

4.1. Video 1: Lab Video

The first video is recorded in the lab and a number of in-
dividuals are visible in this video. Figure 1 (top-left) shows
a selection of frames from this video. Faces are visible in
some frames of the video. On the other hand a number of
frames are either out-of-focus or were recorded when the
mobile device was facing downwards. This video show-
cases the use of (salient) face detection when constructing
the final-cut of the video. Figure 1 also shows selection of
frames from 3 different final-cuts, each of which was con-
structed using one or more sensor and video streams.

We constructed ground truth by manually constructing a
final-cut, primarily focusing on high-quality segments (i.e.,
frames that are in focus) that contain faces. The accuracy
results for different final-cuts are listed in Table 1. The

Streams Accuracy (¢) Duration (s)
DyD, 0.43 87.3
D,DsqDy 0.77 52.3
DoDoDyqDy 0.90 39.5

Table 1. Quality measures and durations for each of final videos
automatically generated from the raw lab video.

final-cut obtained by using accelerometer and magnetome-
ter data has the lowest accuracy as expected. The second
cut combines face detection, focus analysis, and roll data
(to determine the attitude of the recording device). This cut
has higher accuracy than that of the first cut. Still this cut
contains some undesirable frames. The last cut also uses
accelerometer information, and this cut boasts the highest
accuracy. These results show that it is indeed advantageous
to combine sensor (non-visual) with video data to construct
high-quality final-cuts.

Streams have different strengths and together these con-
tribute to the overall accuracy (and quality) of the final-cut.
For this video the face detection stream, for example, re-
sults in the largest gain in accuracy; however, it cannot han-
dle every case. Consider the D, D 4D final-cut in Table 1
where the TV is incorrectly categorized as a face, leading
to the inclusion of a fairly large uninteresting region in the
final cut. Focus analysis combined with accelerometer is
able to resolve this issue.

4.2. Video 2: Ferris Wheel Video

The second video is recorded using our Android app
while sitting on a Ferris wheel. Various views of the fair-
grounds are seen in the video for the duration of the ride.
A selection of frames from this video can be seen in Fig-
ure 7. Some frames are over-exposed, while others capture
moments when the mobile device was not oriented correctly
to capture any meaningful video.

Figure 7 shows three final cuts constructed from the
recorded video using different combinations of sensor and
video streams. The first cut uses pitch, roll, and yaw sen-
sor streams (Right, top row, Figure 7). This cut does not
use any visual data. Notice that this cut contains some over-
exposed frames. The second cut uses focus information (in-
ferred using the visual stream) in addition to accelerometer
data (Right, middle row). The last cut is constructed using
focus analysis, accelerometer, roll, pitch, and yaw sensor
streams (Right, bottom). Roll, pitch, and yaw readings are
used to determine if the camera is pointing in roughly the
“forward” direction. For this case, our intent is clearly to
avoid segments that are captured when the mobile device is
facing downwards.

In order to ascertain the effects of using sensor streams,
video streams, and a combination of the two for construct-
ing final cuts, we use our method to automatically construct
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Figure 7. Example frames extracted from the raw ferris wheel video (top left) along with frames from final cuts constructed using different
combinations of visual and sensor stream data (right). Arrows are used to show which streams contribute to each final cut.

Streams Accuracy (¢) Duration (s)
Doy 0.91 150.6
Dy 0.96 142.2
DyD, 0.96 141.6
DoD,Dy 0.99 134.6

Table 2. Quality measures and durations for each of final videos
automatically generated from the raw ferris wheel video.

four different final cuts of the Ferris Wheel video (see Ta-
ble 2). The first cut uses only optical flow stream, and
it is able to obtain an accuracy of 0.91. The second cut
uses the focus analysis stream and achieves an accuracy
of 0.96. This is an improvement over the first cut. The
second cut also uses much less computational resources,
since it avoids computationally expensive optical flow es-
timation. The third cut, which uses accelerometer and ori-
entation streams, also achieves 0.96 accuracy. The third cut
uses no visual processing. The last cut combines accelerom-
eter, orientation and focus analysis streams and achieves an
accuracy of 0.99. These results confirm our hypothesis that
final cuts that combine both sensor and video streams boast
higher accuracy numbers than those cuts that use only sen-
sor or video streams.

4.3. Video 3: Concert Video

The last video was recorded during a music concert. This
video is of particular interest since camera equipped mobile
devices are perfectly suited to capture such personal mo-
ments. The captured video exhibits a variety of video ef-
fects. Some portions are captured using landscape mode,
while others are recorded in portrait mode. At times the de-
vice is facing the ground. Due to extreme motion and the
dynamic nature of the event being recorded, more than a
few frames are out-of-focus.

We used our method to construct five different final cuts
(see Table 3). The first two cuts use accelerometer and mag-

Streams Accuracy (¢) Duration (s)
D, 0.84 105.1
D, 0.83 107.5
Dy 0.77 80.2
DoDy 0.87 59.4
DoDoDy 0.92 68.7

Table 3. Quality measures and durations for each of final videos
automatically generated from the raw concert video.

netometer sensor data streams, respectively. The third cut
uses focus analysis stream. The accuracy for this cut is
lower than that of the first two. The fourth cut combines fo-
cus analysis and accelerometer streams. This cut achieves
better accuracy than the first three cuts. The last cut that
uses focus analysis, accelerometer and orientation streams
boasts the highest accuracy. It is also possible to compen-
sate for portrait and landscape recording when creating a
cut.

The results obtained for this video paints a similar pic-
ture: cuts that use both sensor and video streams achieve
better quality than those that rely upon only sensor or video
streams. Accelerometer data is able to select video seg-
ments exhibiting little or no motion blur effects and focus
analysis can further refine this selection. Notice that cuts
that combine accelerometer and focus analysis streams have
a higher quality than cuts that use either accelerometer or
focus analysis streams, but not both. The (fifth) cut that also
uses orientation data in addition to accelerometer and focus
analysis streams achieves even better results. Orientation
data is used to discard video segments where the camera is
facing downwards (thus not pointing at the stage).

Portions of this video were captured in landscape mode,
while other parts were captured in portrait mode. Although
our automatically edited cuts consist of segments from both
of these orientations, the orientation stream data provided
by the magnetometer sensor makes it a trivial task to create
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Figure 8. Example frames extracted from the raw concert video (top left) along with frames from final cuts constructed using different
combinations of visual and sensor stream data (right). Arrows are used to show which streams contribute to each final cut.

a final cut consisting of segments from only a single orien-
tation (portrait or landscape).

5. Conclusion

This paper explores the idea of automatically editing
videos using non-visual sensor streams and video analysis.
Our system is designed for a camera-equipped mobile de-
vice supporting sensors, such as gyroscope, accelerometer,
and magnetometer. These sensors are commonplace in to-
day’s mobile devices. We implemented an Android app ca-
pable of storing gyroscope, magnetometer, and accelerom-
eter streams while recording videos. The app also imple-
ments our video editing framework described herein. Con-
sequently, it is possible to use this app to construct multiple
final cuts of the recorded video. The app supports auto-
matic, semi-automatic, and manual modes for constructing
the final cut of the recorded video.

Video summarization is an active area of research; how-
ever, none of the existing video summarization benchmarks
are suitable for our needs. These benchmarks do not include
any sensor information. Therefore, we have demonstrated
the system on three videos that we captured using the app,
which was developed as a part of this project. The results
support the primary hypothesis of this work; it is advanta-
geous to exploit non-visual sensor streams (where available)
during video summarization.

In the future, we plan to include support for a greater
range of video based techniques, e.g., degree of partial
blur [8], aesthetic appeal of a video segment [4, 7], etc. We
also plan to conduct a larger user-study to fully understand
the perceptual quality of the final cuts constructed from the
raw video.
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