
A Negotiation Protocol with Conditional Offers
for Camera Handoffs

Wiktor Starzyk
University of Ontario Institute of Technology

Oshawa, ON, Canada
wiktor.starzyk@uoit.ca

Faisal Z. Qureshi
University of Ontario Institute of Technology

Oshawa, ON, Canada
faisal.qureshi@uoit.ca

ABSTRACT
This paper explores the idea of conditional offers during camera
handoff negotiations. In a departure from contract-net inspired ne-
gotiation models that have been proposed for camera handoffs, the
current scheme assumes that each camera maintains the state of
its neighbouring cameras. To this end, this paper presents a new
short-term memory model for maintaining a camera’s own state
and the state of its neighbouring cameras. The fact that each cam-
era is aware of its surrounding cameras is exploited to generate
conditional offers during handoff negotiations. This can result in
multiple rounds of negotiations during a single handoff, leading to
successful handoffs in situations where one of the cameras that is
being asked to take on one more task is unable to take on a new task
without relinquishing an existing task. The results demonstrate the
advantages of the proposed negotiation model over existing models
for camera handoffs.

General Terms
Smart cameras, negotiation models, camera handoff

Keywords
Smart cameras, camera handoff, negotiations models, counter-offers

1. INTRODUCTION
The need for security in public spaces and the plummeting costs

associated with camera installations are pushing the growth of video
surveillance. Surveilling large environments necessitates the use of
multiple cameras, as no single camera is able to observe the entire
scene. As the number of cameras grows, it becomes impractical
for a human operator to monitor all the video feeds. Consequently,
over the last several years, there is much work on camera networks
capable of providing video coverage of extended spaces with mini-
mal human intervention. These networks comprise smart cameras:
visual sensors with onboard processing and storage and the ability
to communicate with other sensor nodes in the vicinity.

Camera control and coordination are important research areas
within smart camera networks. Specifically, how best to coordinate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDSC ’14 Venice, Italy
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Cam 1Cam 1 Cam 2 Cam 2 Cam 1 Cam 2

Cam 1 Cam 2 Cam 1 Cam 2

Not
Tracked

With Conditional Offers Without Conditional Offers

(a)
Camera 2

onEvaluateSuccessful

beginEvaluate(hid)

Camera 1

MsgNewRequest(hid)

MsgOffer(hid, value, condition)

MsgOffer(hid, value)

onPedestrianIsLeaving

if canAddTask():
else if swapCandidateExists():
 condition = swapCandidate
else:MsgOffer(hid, -1)

onAuctionExpired
winner = chooseWinner()
endObserve(hid)
if condition:
 beginObserve(condition)

beginObserve(hid)
if condition:
 endObserve(condition)

MsgAcceptOffer(hid)

(b)

Figure 1: (a) Conditional offers allow handoffs to occur even if
a camera is already at is tracking limit. They allow a camera to
send an offer with a condition that ensures the auctioning camera
takes over a task from the bidding camera. (b) Messages exchanged
during the handoff operation. Notice that camera 2 proposes a con-
ditional offer suggesting a task swap.

the available cameras to carry out the observation tasks? Ideally
the control and coordination strategy should be distributed, as cen-
tralized schemes do not scale and defeat the raison d’êter of smart
camera networks. Game-theory [1] based and contract-net [2, 3]
inspired auction based schemes have been proposed to address the
issue of camera grouping and handoff in smart camera networks.
This paper develops a new negotiation protocol for camera hand-
offs. The proposed model has two novel features. First, it describes
a short-term memory model, which enables each camera to main-
tain the state of its neighbouring cameras. Second, it implements
a mechanism for conditional offers, which allows cameras to go
through multiple rounds of negotiations during each handoff task.
The ability to propose conditional offers leads to successful hand-

offs in situations where a camera that is being asked to take on a
new task is unable to do so unless it first terminates an existing task.

Consider the scenario shown in Fig. 1. Camera 1 is observing a
pedestrian depicted as the blue circle and camera 2 is tracking an
individual depicted as the green square. When camera 1 detects that
the blue circle is about to leave its field of view, camera 1 requests
camera 2 to take over the tracking (or observation) responsibilities
for this pedestrian. Camera 2 is already at its tracking limit, i.e.,
camera 2 can only observe a single pedestrian at any given time.1

Consequently, camera 2 is unable to take on the task of observing
the blue circle. However, in the scheme proposed here, camera 2 is
able to propose the following conditional offer to camera 1: camera
2 agrees to observe the blue circle if camera 1 agrees to observe the
green square. Camera 2 comes up with this conditional offer by
relying upon its internal model of camera 1. Camera 1 agrees and
the two cameras swap their pedestrians, resulting in a successful
handoff.

In the above example, we have used tracking limit as the rea-
son why camera 2 is unable to take on a new task, which in turn
triggered a conditional offer and the second round of negotiations.
Tracking limit is but one of the reasons why a camera might be
unsuitable for taking on a new task. It is possible that a camera
is unable to carry out a particular combination of tasks simultane-
ously. For example, a pan/tilt/zoom (PTZ) camera might be un-
able to view two pedestrians at the opposite ends of its field-of-
view with the desired resolution. Such situations are also resolved
through conditional offers.

The proposed approach is distributed. Camera handoffs are the
result of local negotiations between two neighbouring cameras (i.e.,
cameras that are within the communication range of each other).
The lack of a central controller suggests that the proposed tech-
nique can be scaled to large camera networks—the scalability prop-
erties of the proposed method have yet to be empirically evalu-
ated. We evaluate the proposed negotiation model on a (simulated)
network of uncalibrated active pan/tilt/zoom (PTZ) cameras. The
negotiation model is used to perform handoffs between individ-
ual cameras, which are modelled as autonomous behavior-based
agents. The handoffs ensure that the camera network is able to track
multiple targets as these move in the area under observation, weav-
ing in and out of the field of views of different cameras. We have
also compared our technique against the camera handoff scheme
that appeared in [3] and the initial results appear promising.

2. LITERATURE REVIEW
The handoff problem refers to the transfer of the tracking re-

sponsibilities of a pedestrian from one camera to another. Many
different approaches have been proposed, some of which are dis-
cussed in [4]. These approaches can typically be placed in one of
two groups: 1) handoff function based approaches, and 2) negotia-
tion based approaches.

The handoff function based approaches rely on a learning stage
where a handoff function or handoff table can be learned. Javed
and Khan propose a way to discover the relationship between cam-
era FOV’s by projecting the FOV lines of one camera onto another
cameras view to find overlapping regions [5]. Park et al. propose a
solution based on constructing a distributed lookup table, which en-
codes the suitability of a camera to observe a specific location [6].
Jo and Han propose the use of a handoff function defined as the
ratio of co-occurrence to occurrence for all pairs of points in two

1The tracking limit of 1 is only used for illustrative purposes in this
example. The proposed scheme does not assume that each camera
can only track a single individual.

views [7]. Quaritsch et al. propose an approach that relies on a
static vision graph that encodes migration regions [8].

Other approaches utilize inter-camera negotiations to complete
the handoff. Li and Bhanu develop a game theoretic approach
in [9]. When an object is visible in multiple cameras, the best
camera is chosen based on its expected utility. They also pro-
pose a number of criteria to construct the utility function, such
as the number of pixels occupied by the selected target in an im-
age. Their approach eschews spatial and geometric information.
Qureshi and Terzopoulos propose an uncalibrated camera network,
where cameras form groups and cooperatively carry out the obser-
vation tasks [10]. Groups are dynamic arrangements, which are set
up through a distributed auction process. Assignment conflicts are
modelled as a constraint satisfaction problem whose solution deter-
mines appropriate camera assignments. Song et al. present a game-
theoretic strategy for cooperative control of a set of decentralized
cameras [11]. The cameras work together to track every target in
the area at acceptable image resolutions. The camera network can
also be tasked to record higher-resolution imagery of a selected
target. Qureshi presents a negotiation protocol that allows camera
nodes to setup collaborative tasks in a purely distributed manner
in [2]. The camera nodes, which are modelled as behaviour based
autonomous agents, are able to ask other cameras to take over a
task when they are no longer able to meet task requirements.

The work by Esterle et al. on a socio-economic approach to the
handoff problem [3] is the closets to the work presented here. They
propose a system of self-interested autonomous agents that handoff
tasks from one camera to another using a market mechanism. Each
camera tries to maximize their own utility by auctioning off tasks
it cannot or does not want to complete. This approach is similar to
our approach; however, the key difference is our approach does not
use self-interested agents that try to maximize their utility. Instead,
our agents try to help each-other out when ever possible. This is
achieved with the use of a memory module which we introduce.

3. APPROACH
Consider an area under observation by n cameras. The cameras

are tasked to observe p pedestrians (targets) throughout their stay
in the region given the following constraint: each camera can only
track at most o pedestrians. The actual number of tasks a cam-
era can successfully carry out simultaneously at any given instant
depends upon multiple factors, such as the type of the camera, com-
putational load on the camera, the desired resolution of the captured
imagery, etc. Whether or not the cameras have overlapping field-
of-views (FOVs), camera handoffs are necessary to successfully
carry out the task outlined above. We now describe our negotiation
model for camera handoff. Implementation details are provided as
supplementary material.

3.1 Smart Camera Nodes
This work is focused on the negotiation model with conditional

offers for camera handoff, and it makes the following assumptions
about the camera nodes:

• a camera is able to track pedestrians (targets) assigned to it;

• a camera is able to use appearance based signatures for ac-
quiring a new pedestrian (target) for tracking;

• a camera is able to detect when it loses track of a pedestrian;
and

• PTZ cameras are able to select appropriate values for pan, tilt
and zoom settings to observe the assigned pedestrians.

si

New request to
observe pedestrian hj

si + {evaluating(hj)} _ {idle}

si + {observing(hj)} _ {evaluating(hj)}

Request to
observe pedestrian hj

was withdrawn or timeout

New task assignment to
observe pedestrian hj

Stopped observing
pedestrian hj

 if si ={}, si={idle}

+ {evaluating(hj)} _ {idle}

_ {evaluating(hj)}

+ {observing(hj)} _ {evaluating(hj)}

_ {observing(hj)}
 if si ={}, si={idle}

Figure 2: The state machine used by our Camera Controller. States
are shown in ovals and transitions are shown in boxes. Additions
and subtractions are shown next to each transition arc. Courtesy
of [2].

These assumptions are motivated (and supported) by recent ad-
vances in pedestrian detection, recognition and tracking [12] and
PTZ camera tracking [13]. Similar assumptions have been made
by others [2, 3].

We treat each camera as a highly capable behavior-based agent.
Each camera node is aware of the pedestrians (or targets) present in
its FOV. This is easily accomplished by using a pedestrian detection
routine. The following algorithm is used to maintain the set of
pedestriansHi seen by a camera ci between times t− tforget and t,
where t represent the current time. ts(·) is an operator that is used
to set and retrieve the time-stamps for elements of Hi; it operates
on sets. To make things concrete ts(S) = t sets the time-stamps
of every element of set S equal to t; where as, ts(S) assumes that
‖S‖ ≤ 1 and returns the time-stamp of the element or the current
time if the set is empty. ts(S) for ‖S‖ > 1 is undefined.
Require: Hi {The set of pedestrians seen by camera i between

times t− tforget and now (t).}
Ensure: UpdatedHi

1: Capture a frame at time t
2: Use pedestrian detection (recognition) routines to construct a

possibly empty setHt
i of pedestrians found in frame I .

3: Hexisting
i = Ht

i

⋂
Hi {The next four lines update the time-

stamps of existing pedestrians inHi}
4: Hi = Hi \ Hexisting

i

5: ts(Hexisting
i) = t

6: Hi = Hi

⋃
Hexisting

i

7: Hnew
i = Ht

i \ Hexisting
i

8: ts(Hnew
i) = t

9: Hi = Hi

⋃
Hnew

i {Add the previously unseen pedestrians into
Hi}

10: for all h ∈ Hi do
11: if t− ts({h}) > tforget then
12: Hi = Hi \ {h} {Prunning stale entries fromHi}
13: end if
14: end for

At any given time, each camera may be engaged in several ac-
tivities. A camera might be tracking multiple individuals, it might
be evaluating its suitability for tracking a new target, or in case of
PTZ cameras, a camera might be performing a visual search in the
pan/tilt/zoom space to fixate and zoom in on a pedestrian. Ignoring
the innards of a camera node, it is possible to keep track of these
activities using a finite state machine proposed in [2] (see Fig. 2).
The state of a camera node represents the activities it is currently

executing. Given this list of activities, we maintain the activity set
Ai for a camera ci as follows:
Require: The current activity set Ai.
Ensure: The updated activity set Ai.
1: if camera ci is not engaged in activities at the moment then
2: return Ai = Φ
3: end if
4: for all h ∈ Hi do
5: if Camera is tracking h then
6: Ai = Ai

⋃
{Observing(h)}

7: end if
8: if Camera is evaluating its suitability for tracking h then
9: Ai = Ai

⋃
{Evaluating(h)}

10: end if
11: end for

Whether or not a camera is tracking an individual or evaluating
its suitability for tracking a new individual is dictated by the tasks
assigned to the camera. Other caveats are: 1) a camera cannot
be both Observing and Evaluating the same individual and 2)
an idle camera cannot be engaged in Observing or Evaluating
any individual. Typically these tasks are assigned automatically
through camera handoff negotiations described in the next section.
These tasks can also be assigned by an operator manually or through
heuristics of the form: track every individual that enters a specific
region.

3.1.1 Memory Model
In contrast to existing models of smart camera nodes, our scheme

explicitly models short-term memory of a camera node. Each cam-
era uses the short-term memory to store its own state (the list of
pedestrians in the near past plus the list of currently active tasks,
i.e., H and A) and the state of its neighbouring camera nodes.
Each camera manages its memory to keep it up-to-date. Stale items
present in the memory are automatically removed. Presently, we as-
sume that each camera has unbounded memory. Furthermore, we
employ time-stamps to decide when to remove the an item from the
memory.

Below we discuss how a camera manages the states of its neigh-
bouring cameras. Say C represents the set of cameras and Ci rep-
resents the neighbours of ci then ci will store the current state sj
for each camera cj ∈ Ci. Additionally, ci will also keep track of
previous states of camera cj . Remembered states are time-stamped
and older states are automatically forgotten after some time.

Lets consider the following example to illustrate the memory
model. Consider a camera c2 that is currently tracking pedestrians
h2 and h3. c2 is also evaluating its suitability for tracking pedes-
trian h4. Previously, c2 was tracking h1; however, h1 is no longer
tracked by c2. In this scenario a neighbouring camera c1 will store
the following information about c2 in its memory:

• Observing(c2, h2, t);

• Observing(c2, h3, t);

• Evaluating(c2, h4, t); and

• Know(c2, h1, t
−).

Notice that each memory item is time-stamped. Know(c2, h1, t
−)

indicates that camera c1 believes that c2 has seen the pedestrian h1

at some previous time t−.
Cameras share states voluntarily during negotiation messages or

via a periodic state update message. In the above scenario, camera
c2 will periodically sendH2 andA2 to the neighbouring camera c1.
c1 breaks down the received state into memory items and compares

these with the current c2 items stored in its memory. One of the
following four things can happen:

• if an item is already found in the memory, its time-stamp is
updated;

• if an Observing item is received that matches with a stored
Evaluating item, the Evaluating item is replaced with the Ob-
serving item;

• if no item matches with an already stored Observing or Eval-
uating item, the Observing (or Evaluating) item is replaced
by a Know item; or

• if a received item does not match with a stored item (using
the criteria implicit in the last three cases), the received item
is time-stamped and inserted into the memory.

The following example clarifies these rules. Say c1 receives the
following information from c2 at time t+ > t:

A2 = {Observing(h2), Observing(h4)}

and

H2 = {h1, h2, h3, h4},

where ts(h1) = t−, ts(h2) = t+, ts(h3) = t and ts(h4) = t+.
c1 will update its information about c2 as follows:

• Observing(c2, h2, t
+);

• Know(c2, h3, t);

• Observing(c2, h4, t
+); and

• Know(c2, h1, t
−).

If t+ − t− > tforget then item Know(c2, h1, t
−) will be removed

from the memory of c1. There are many schemes for selecting
tforget; however, for the results presented in this paper, we use a
single value of tforget for all items.

In conclusion, the items stored in the short-term memory of a
camera take one of the following forms:

• Observing(ci, hj , t);

• Evaluating(ci, hj , t);

• Know(ci, hj , t).

Here ci ∈ C, hj ∈ H and t refers to the time-stamp of a particular
item. Notice that this form allows a camera to store both its own
state and the states of its neighbouring cameras. Secondly, it is rel-
atively easy to write queries involving cameras and pedestrians on
the data stored in the short-term memory of a camera, such as (1)
pick a neighbouring camera that is currently observing pedestrian
hj , (2) how many neighbouring cameras are observing a particular
pedestrian, (3) is their some neighbouring camera that knows about
a particular pedestrians, etc. When considering the memory model
discussed here, it is worthwhile to remember two things: (1) each
camera only maintains the memory state of its first-hop neighbours,
i.e., cameras that share an edge in the communication graph, and
(2) we do not impose any guarantees that the state of the neigh-
bouring camera is perfectly synchronized. The second item is of
particular importance. The communication overhead to guarantee
that each camera maintains a “perfectly synchronized copy of the
state of its neighbours” is explosive and therefore unattainable in a
real scenario.

Cam 1 Cam 2

(a)

Cam 1 Cam 2

(b)

Cam 1 Cam 2

(c)

Cam 1 Cam 2

(d)
Camera 2

onEvaluateSuccessful

beginEvaluate(hid)

Camera 1

MsgNewRequest(hid)

MsgOffer(hid, value)

onPedestrianIsLeaving

if canAddTask():

onAuctionExpired
winner = chooseWinner()
endObserve(hid) beginObserve(hid)

MsgAcceptOffer(hid)

(e)

Figure 3: A negotiation is initiated by a camera when it notices
that it will not be able to complete a task. (a) Cam 1 is observing
a pedestrian that looks like a blue circle as it moves across a room.
Cam 2 is observing the pedestrian that looks like a green square.
(b) Cam 1 notices that the pedestrian that looks like a blue circle
will soon leave its viewing region, so it asks Cam 2 for help. (c) Af-
ter receiving the request for help, Cam 2 evaluates its suitability for
the task. (d) Cam 2 decides to accept the task and is now observ-
ing both pedestrians. (e) Messages exchanged during the handoff
operation.

Others, including [3], have developed techniques for generating
vision and communication graphics within the context of camera
networks. A side-effect of explicitly modelling the state of neigh-
bouring cameras is that both communication and vision graphs are
automatically learnt. The goal is not to learn the overlaying com-
munication graph or vision graph for the whole network. Rather,
our goal is to learn a local snapshot at each node. For stationary
nodes, we can assume the snapshot to be static; whereas, for non-
stationary nodes, it is best to rely on the forgetting mechanism built
into the memory model to maintain a time-varying snapshot.

3.2 Negotiations
Inter-camera negotiations allow observation tasks to be handed

off from one camera to another as a person moves around an ob-
servation area. Generally speaking, however, a camera can initiate
a negotiation whenever it wants another camera to take over an ob-
servation task:

• Typically a camera initiates a negotiation when it detects that
the pedestrian in question is about to leave its field of view;
or

• A camera can also initiate a negotiation when it wants to free
up resources for a task requested by some other camera.

Existing negotiation schemes for camera handoff do not start nego-
tiations when a camera wants to release resources that are currently
being used by an observation task.

Figure 3 illustrates the basic mechanics of negotiations for cam-
era handoff [3, 2]. Here, camera 1 is viewing a pedestrian that looks
like a blue circle as it walks across a room. Camera 2 is viewing
a pedestrian that looks like a green square. After some time, cam-
era 1 notices that the pedestrian that looks like a blue circle is ap-
proaching the edge of the cameras viewing region. If it goes any

further, the camera will not be able to track it. As a result, camera 1
initiates negotiations with camera 2 to take over the task of observ-
ing the blue circle. In response camera 2 computes its suitability
for taking on this task and returns this information to camera 1.2

The negotiations are successful and camera 2 starts observing the
pedestrian represented by a blue circle. Often camera 1 will initiate
negotiations with more than one neighbouring cameras.

As stated earlier, a key difference between the current work and
existing negotiation schemes for camera handoff is that here each
camera maintains the state of neighbouring cameras. This allows
a camera to be selective when considering neighbouring cameras
for handoff. Consider the following scenario: camera 1 has the
following information in its memory:

• Observing(c2, h2, t
+);

• Know(c2, h3, t);

• Observing(c2, h4, t
+);

• Know(c2, h1, t
−); and

• Observing(c3, h6, t
+).

Since camera c3 is only observing a single pedestrian h6, camera c1
first requests a handoff with c3. If that fails, it can request c2 to take
over the task. Along similar lines, in a calibrated camera network,
where each camera not only knows the state of neighbouring cam-
eras, but also their observation constraints, cameras may be able
to predict the outcome of negotiations without actually exchanging
any messages.

3.3 Conditional Offers
Camera nodes are not modelled as self-interested agents and are

always ready to takeover an observation task from a neighbouring
camera. Still there are situations where a camera cannot accept a
task, even if it can meet all task requirements. A camera node has a
limited set of resources and is able to track at most o pedestrians at
any given time. If a camera node is at this tracking limit, it cannot
accept any new tasks. One potential solution to this problem is
conditional offers. Conditional offers give camera nodes the ability
to swap tasks or to terminate existing tasks in order to take on new,
more pressing tasks.

4. RESULTS
We have developed a PTZ camera network simulator for eval-

uating the proposed camera handoff technique (see Fig. 4). The
simulator, which is implemented in Python, is able to simulate the
movement of pedestrians, camera logic, camera motors (for PTZ
cameras), inter-camera communication and camera sensing. Pedes-
trians motions are scripted via a sequence of move and stand com-
mands. Each move command identifies a location plus a radius.
This allows us to re-run a scenario with randomly generated paths.
For the tests presented here, the radius is set to 200 units (or 2 me-
ters in simulation space).

To simplify the testing process, we have made a few simplifying
assumptions. We assume perfect tracking, which means that if a
pedestrian is inside a camera’s viewing region, it can be tracked
perfectly. We also ignore any occlusions between pedestrians. The
visibility of a pedestrian is calculated by projecting the pedestrians
3D bounding box onto a camera’s image plane and computing the
2Many schemes exist in the literature for computing the suitabil-
ity of a camera to an observation task [2, 3, 14]. Here we do not
concern ourselves with how this suitability is computed.

Figure 4: A screenshot of our 2D camera network simulator.

0	

 4	

 8	

 12	

 16	

 20	

 24	

 28	

 32	

 36	

 40	

 44	

 48	

Time (s)	

With Memory	

Without Memory	

Figure 6: Scenario 1: The tracking history of pedestrian 1 with and
without the use of a cameras’ memory for storing the internal state
of the neighbouring cameras. When using memory, a tasks swap
can occur and the pedestrian 1 is seamlessly tracked through out
his stay in the region.

percentage of the image taken up by the person. Recent advances
in pedestrian tracking suggest that these assumptions are valid for
camera networks observing low density (pedestrian) crowds.

4.1 Test Scenarios
We evaluate our approach on four different scenarios shown in

Fig. 5. The first two scenarios are designed to highlight the novel
aspects of the proposed approach. Scenarios 3 and 4 are designed
to compare our approach with that of Esterle et al. [3]. Lastly we
test the proposed approach to track 32 pedestrians as these move
along a rectangular path observed by 16 cameras.

4.1.1 Scenario 1
The first scenario highlights the role of memory and conditional

offers (Fig. 5(a)). Here each camera is restricted to observe a sin-
gle individual at any given time. Camera 2 is already observing
an individual when camera 1 requests a handoff. In the absence
of memory and the ability to propose a conditional offer, handoff
will be unsuccessful, since camera 2 is unable to track two pedes-
trians at the same time. Since camera 2 models the internal state
of camera 1, camera 2 proposes to swap the tasks (conditional of-
fer). Camera 1 agrees, which results in a successful handoff. Fig. 6
plots the tracking history of pedestrian 1 with and without memory.
Notice that, when using memory, pedestrian 1 is tracked through-
out his stay in the region under observation. Without the use of
memory, person 1 is lost once he leaves the FOV of camera 1.

4.1.2 Scenario 2
The second scenario also consists of two cameras with non-over-

lapping FOVs (Fig. 5(b)). It simply demonstrates that the proposed
approach can function in situations where cameras’ FOVs do not
overlap. Fig. 7 plots the tracking history of pedestrian 1 as she
moves between the observational ranges of camera 1 and camera 2.

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario 4

Figure 5: The first two scenarios highlight the novel aspects of the proposed technique. (a) illustrates the effect of memory on pedestrian
tracking. (b) shows that handoffs are possible even when there is no overlap between the cameras’ field of views. (c)-(d) The proposed
technique is compared with that of Esterle et al. [3] using scenarios 3 and 4.

0	

 6	

 12	

 18	

 24	

 30	

 36	

 42	

 48	

 54	

 60	

 66	

 72	

 78	

 84	

 90	

Time (s)	

Figure 7: Scenario 2: The tracking history of pedestrian 0. Since
the two cameras do not have overlapping viewing regions, the
pedestrian does not get tracked for a period of time.

70	

75	

80	

85	

90	

95	

100	

1	

 2	

 4	

 6	

 8	

 10	

Pe
rc

en
t O

bs
er

ve
d	

Number of Pedestrians	

Our Approach	

 Esterle Approach	

Figure 8: Scenario 3: The percent of pedestrians observed by our
approach and that of [3] as the number of pedestrians are increased.
The results are averaged over 10 runs.

Notice that camera 2 is able to track the individual as it enters its
field of view. Again camera memory is at play here.

4.1.3 Scenario 3
The third scenario is used to compare our approach with that of

Esterle et al. [3] (Fig. 5(c)). We run tests with 1, 2, 4, 6, 8, and 10
pedestrians to show how camera network’s performance degrades
as the number of pedestrians increases. Half of the pedestrians
begin in camera 1’s viewing region and walk towards camera 2’s
viewing region. The other half start in camera 2’s viewing region

6	

6.5	

7	

7.5	

8	

8.5	

35	

 37	

 39	

 41	

 43	

 45	

 47	

 49	

 51	

 53	

 55	

 57	

 59	

Pe

de
st

ri
an

s T
ra

ck
ed
	

Time (s)	

Our Approach	

 Esterle Approach	

Figure 9: Scenario 3: Average number of pedestrians tracked over
time in Scenario 3 with 8 people.

88	

90	

92	

94	

96	

98	

100	

2	

 4	

 8	

 12	

 16	

Pe
rc

en
t O

bs
er

ve
d	

Number of Pedestrians	

Our Approach	

 Esterle Approach	

Figure 10: Scenario 4: The percent of pedestrians observed as
the number of pedestrians increased in Scenario 4. The results are
averaged over 10 runs.

and walk in the opposite direction (Fig. 5c). We ran the simula-
tion 10 times for each approach and averaged the results. Fig. 8
shows that our approach performed slightly better than the Esterle
et al. approach once there are around 6 people in the scene. Fig. 9
shows how smooth our approach is compared to the Esterle ap-
proach. Our approach is able to complete seamless handoffs, even
when the cameras are tracking the max number of people. This is
due to the memory module allowing cameras to swap tasks when
cameras are at their tracking limits. The Esterle et al.’s approach
has to wait until a pedestrian leaves a cameras viewing region be-
fore being able to accept a new task. This results in a short period
of time where a pedestrian will not be tracked.

4.1.4 Scenario 4
In our final scenario, we have four cameras positioned in a row

with pedestrians walking in both directions. We ran tests with 2,
4, 8, 12, and 16 pedestrians to again show how the cameras perfor-
mance degrades with more pedestrians. Again we ran each test 10
times for both our approach and that of Esterle et al. s. A com-
parison of the percent of pedestrians observed as the number of
pedestrians is increased is shown in Fig. 10. As in scenario 3, our
approach outperforms Esterle et al.’s approach as the number of
pedestrians increases.

4.2 Scenario 5
This scenario consists of 32 pedestrians walking along a rectan-

gular path. 16 cameras are tasked with observing these individuals
(see Fig. 11). The pedestrians are tracked for 3000 simulation steps.
Using this scenario, we have evaluated the proposed model under
4 settings: 1) each camera can track no more than 4 pedestrians,
2) each camera can track no more than 4 pedestrians and the cam-

Figure 11: Scenario 5: 16 cameras are tasked to observe 32 pedes-
trians as these move along a rectangular path.

14

16

18

20

22

24

26

28

30

32

34

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

of

 P
ed

es
tr

ia
ns

Simulation Steps (x30)

4 Max with
Memory

4 Max without
Memory

2 Max with
Memory

2 Max without
Memory

Figure 12: Scenario 5: The numbers of pedestrians tracked over
time.

eras do not maintain the state of their neighbours, 3) each camera
can track no more than 2 pedestrians and 4) each camera can track
no more than 2 pedestrians and the cameras do not maintain the
state of their neighbours. Fig. 12 plots the number of pedestrians
tracked for each setting over time. On average 30.987 pedestri-
ans are tracked when cameras can track up to 4 pedestrians. This
value is reduced to 29.993 when cameras are not allowed to pro-
pose conditional offers (no memory). Similarly, on average the
cameras track 22.193 pedestrians when each camera is allowed to
observe only 2 pedestrians at any given time. This value is reduced
to 21.316 when cameras are not allowed to propose conditional of-
fers. While these results suggest that benefits of conditional offers
are marginal, it is worth keeping in mind that conditional offers
only effect situations where tasks swaps are possible. Perhaps, this
scenario does not contain many such situations. In any case, sce-
nario 1 clearly makes the case of conditional offers.

5. CONCLUSIONS
In this paper we presented a new short-term memory model for

maintaining a camera’s own state and the states of neighbouring
cameras. We use this memory model to introduce the concept of
conditional offers during handoff negotiations. Conditional offers
allow successful handoff in situations where existing approaches
would fail. One such example is when a camera is at its tracking
limit and cannot track any more pedestrians. With the use of the
memory model, cameras are able to negotiate a swap of tasks if the
pedestrians being tracked are visible in both cameras.

We have evaluated our approach on scenarios with 2, 4 and 16
cameras and up to 32 pedestrians. We have compared our approach
to the Esterle et al. scheme that appeared in [3] and the results seem
to suggest that our approach outperforms the handoff approach de-

veloped in [3]. Here we focus on the idea of using the memory to
support handoff negotiations, there are other uses of memory which
we hope to explore in the future, such as distributed dynamic load
balancing in camera networks.

6. REFERENCES
[1] Y. Li and B. Bhanu, “A Comparison of Techniques for

Camera Selection and Hand-Off in a Video Network,”
Distributed Video Sensor Networks, 2009.

[2] F. Z. Qureshi, “Collaborative sensing via local negotiations
in ad hoc networks of smart cameras,” Proceedings of the
Fourth ACM/IEEE International Conference on Distributed
Smart Cameras - ICDSC ’10, p. 190, 2010.

[3] L. Esterle and P. R. Lewis, “A socio-economic approach to
online vision graph generation and handover in distributed
smart camera networks,” ACM Transactions on Sensor
Networks, vol. 0, no. 0, pp. 1–24, 2011.

[4] Y. Li and B. Bhanu, “A Comparison of Techniques for
Camera Selection and Hand-Off in a Video Network,”
Distributed Video Sensor Networks, 2009.

[5] O. Javed and S. Khan, “Camera handoff: tracking in multiple
uncalibrated stationary cameras,” IEEE Computer Society
Workshop on Human Motion, 2000.

[6] J. Park, P. Bhat, and A. Kak, “A look-up table based
approach for solving the camera selection problem in large
camera networks,” Proceedings of the International
Workshop on Distributed Smart Cameras, 2006.

[7] Y. Jo and J. Han, “A new approach to camera hand-off
without camera calibration for the general scene with
non-planar ground,” Proceedings of the 4th ACM
international workshop on Video surveillance and sensor
networks - VSSN ’06, p. 195, 2006.

[8] M. Quaritsch, M. Kreuzthaler, B. Rinner, H. Bischof, and
B. Strobl, “Autonomous Multicamera Tracking on
Embedded Smart Cameras,” EURASIP Journal on
Embedded Systems, vol. 2007, pp. 1–10, 2007.

[9] Y. Li and B. Bhanu, “Utility-based dynamic camera
assignment and hand-off in a video network,” Second
ACM/IEEE International Conference on Distributed Smart
Cameras, pp. 1–9, 2008.

[10] F. Z. Qureshi and D. Terzopoulos, “Multi-camera Control
through Constraint Satisfaction for Persistent Surveillance,”
2008 IEEE Fifth International Conference on Advanced
Video and Signal Based Surveillance, pp. 211–218, Sep.
2008.

[11] B. Song, C. Soto, A. K. Roy-Chowdhury, and J. A. Farrell,
“Decentralized camera network control using game theory,”
in Second ACM/IEEE International Conference on
Distributed Smart Cameras, 2008, pp. 1–8.

[12] M. Enzweiler and D. M. Gavrila, “Monocular pedestrian
detection: Survey and experiments,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 31, no. 12,
pp. 2179–2195, Dec 2009.

[13] C. Micheloni, B. Rinner, and G. Foresti, “Video analysis in
pan-tilt-zoom camera networks,” IEEE Signal Processing
Magazine, vol. 27, no. 5, pp. 78–90, Sep 2010.

[14] Y. Li and B. Bhanu, “Utility-based camera assignment in a
video network: A game theoretic framework,” Sensors
Journal, IEEE, vol. 11, no. 3, pp. 676–687, 2011.

