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Abstract—Virtual Vision advocates developing visually and
behaviorally realistic 3D synthetic environments to serve the
needs of computer vision research. Virtual vision, especially, is
well-suited for studying large-scale camera networks. A virtual
vision simulator capable of generating “realistic” synthetic
imagery from real-life scenes, involving pedestrians and other
objects, is the sine qua non of carrying out virtual vision
research. Here we develop a distributed, customizable virtual
vision simulator capable of simulating pedestrian traffic in
a variety of 3D environments. Virtual cameras deployed in
this synthetic environment generate imagery using state-of-the-
art computer graphics techniques, boasting realistic lighting
effects, shadows, etc. The synthetic imagery is fed into a visual
analysis pipeline that currently supports pedestrian detection
and tracking. The results of this analysis can then be used for
subsequent processing, such as camera control, coordination,
and handoff. It is important to bear in mind that our visual
analysis pipeline is designed to handle real world imagery
without any modifications. Consequently, it closely mimics the
performance of visual analysis routines that one might deploy
on physical cameras. Our virtual vision simulator is realized
as a collection of modules that communicate with each other
over the network. Consequently, we can deploy our simulator
over a network of computers, allowing us to simulate much
larger camera networks and much more complex scenes then
is otherwise possible.
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I. INTRODUCTION

Multi-camera systems are rapidly evolving from highly
specialized wired networks of stationary passive and active
cameras designed to provide visual coverage of the scene to
ad hoc networks of smart camera nodes, capable of near-
autonomous operation to support a variety of applications,
such as urban and participatory sensing, disaster response,
plant and animal habitat monitoring, etc. Whereas traditional
multi-camera systems focus primarily on multi-camera scene
analysis, smart camera networks are also concerned with
camera coordination and control, in-network processing and
storage, and resource aware visual analysis. Pre-recorded
video, while useful, is not sufficient to study camera control
and coordination strategies. Rather one needs access to such
a camera network itself. This observation together with the
fact that most researchers who are motivated to study camera
networks do not have access to physical camera networks

of suitable complexity led to the development of the virtual
vision paradigm for camera networks research [1].

Virtual vision paradigm for computer vision research
advocates employing reality emulators—visually and be-
haviorally realistic 3D environments, richly populated with
pedestrians, automobiles, etc.—to carry out camera networks
research. Virtual camera networks of suitable complexity
can be simulated within these synthetic environments, called
virtual vision simulators. Using a virtual vision simulator
offers several advantages over traditional physical camera
setups during ideation, prototyping, and evaluation phases,
including:

• legal issues surrounding access to physical camera
networks installed in public spaces disappear when
dealing with a simulated camera network;

• developing a virtual vision simulator is a major un-
dertaking; however, once such a simulator becomes
available, the cost of carrying out camera networks
research within this simulator is minimal compared to
performing research on a physical camera network—a
virtual vision simulator runs on standard PCs and does
not require any special hardware;

• virtual vision offers quick prototyping—it is much
easier and faster to reconfigure a virtual camera network
than it is to reconfigure a physical camera network;

• complex vision and control algorithms that need to be
studied in “real time” can be easily studied in a virtual
vision simulator by slowing down the virtual clock of
the simulated environment;

• virtual vision offers far faster design/evaluation itera-
tions when compared to a physical camera network;

• ground truth is readily available; and
• camera control and coordination algorithms can easily

be compared against each other since scenes are per-
fectly repeatable.

Qureshi and Terzopoulos demonstrated the virtual vision
paradigm of camera networks research by designing and
studying simulated camera networks [1]. In their work, they
relied upon a virtual vision simulator comprising a 3D
reconstruction of the Penn train station, inhabited by up
to 1000 self-animating pedestrians, developed by Shao and
Terzopoulos [2].



Figure 1: A view of our virtual world showing pedestrians walking on an upper floor of an office building. Toronto (Canada)
skyline is visible through floor to ceiling panoramic windows. Our scripted pedestrians use motion-capture data to simulate
realistic motion and cast dynamic shadows on the floor and the walls.
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Figure 2: An overview of our distributed virtual vision simulator.

Here, we present a distributed virtual vision simulator. Our
simulator is designed to address some of the shortcomings
of the virtual vision simulator employed by Qureshi and
Terzopoulos in their work on smart camera networks. Specif-
ically, their virtual vision simulator is tied to a single PC;
whereas, our simulator can be deployed over a network of
computers. The ability to spread the computational load over
multiple computers assumes urgency as we begin to simulate
richer, more complex synthetic worlds and larger, more
sophisticated virtual camera networks. Unlike the virtual
vision system used by Qureshi and Terzopoulos [1], our
simulator uses state-of-the-art graphics technology to sup-
port advanced rendering effects—such as lighting, shadows,
transparency—which adds to the visual realism of the scene
(Fig. 1). Lastly, we have a developed a vision pipeline that
works without any modifications on both synthetic imagery
generated by our virtual vision simulator and real video
captured by a physical camera network. This capability, we
believe, will help us validate our simulator in the future.

II. RELATED WORK

In 1995, Terzopoulos and Rabie introduced a software
based approach to designing active vision systems called
animat vision [3]. The animat approach replaces physical
robots and cameras with artificial animals referred to as
animats [4]. The animats are placed in physics-based virtual
worlds to study active vision systems. Eschewing the need
for real cameras, robots, and other hardware, at least during
the early stages of research, this approach promises huge
savings in time and money.

In 2003, Terzopoulos proposed using reality emulators for
computer vision research [5]. Santuari et al. developed a
virtual museum simulator, populated with scripted visitors,
to study computer vision algorithms [6]. This simulator was
aimed at developing low level pedestrian segmentation and
tracking algorithms. The virtual museum simulator uses so-
phisticated 3D rendering techniques with support for global
illumination, shadows and different visual artifacts such as
motion blur and interlacing.

In 2005, Shao and Terzopoulos developed a train station
simulator, populated with self-animating pedestrians (com-
muters and visitors) [2]. Qureshi and Terzopoulos used this
train station simulator to develop the first of its kind virtual
vision simulator [1]. They demonstrated their virtual vision
simulator by studying high-level camera control and coordi-
nation problems in camera networks comprising both passive
and active cameras. The virtual vision simulator presented in
this paper addresses many of the shortcomings of the virtual
vision simulator developed by Qureshi and Terzopoulos
in [1]. Our simulator has superior synthetic image quality;
it supports subtle lighting effects and dynamic shadows. But
more importantly the simulator developed here is distributed.
Consequently, it is capable of simulating much larger camera
networks and far richer synthetic environments. Lastly, our
simulator only uses open source libraries.

III. CONTRIBUTIONS AND OVERVIEW

The contributions of the research presented herein are
twofold. First, we develop a distributed virtual vision simula-
tor. We demonstrate the suitability of this simulator for cam-



Figure 3: VW consists of the top floor of an office building
situated in downtown Toronto. Toronto skyline is visible
through floor-to-ceiling panoramic windows. Sunlight filters
through the window and cast dynamic shadows. (Top-Row)
Top-down view of the office floor, showing individual of-
fices, conference rooms, common areas, and elevator lobbies.
(Bottom-Row) Synthetic imagery captured by 4 different
cameras (two left images are captured by PTZ cameras).
Notice the subtle lighting and shadow effects, which were
missing in the virtual vision simulator developed by Shao
and Terzopoulos [1].

era networks research by providing examples of some recent
work on smart camera networks that was carried out within
this simulator. Second, we present a flexible visual analysis
framework capable of analyzing multiple image/video/cam-
era streams simultaneously. The visual analysis framework
was designed from ground up to handle imagery captured
by a camera network. It works for both synthetic imagery
(captured by simulated camera networks) and real imagery
(collected by a physical camera network).

The rest of the paper is organized as follows. The next
section provides an overview of our virtual vision simulator.
Sec. V presents the virtual world engine. We introduce the
visual analysis pipeline in the following section. Sec. VII
discusses the synchronization unit and the network operation
of the virtual vision simulator. We present three camera net-
works research projects that used our simulator in Sec. VIII.
Sec. IX concludes the paper with a brief discussion.

IV. SYSTEM OVERVIEW

Our virtual vision simulator consists of three types of
modules: 1) virtual world engine (VW), 2) visual analysis
pipeline (VP) and 3) synchronization unit (SYNC). In a
typical realization of the virtual vision simulator, one or
more instances of VW and VP modules are spread over a
network of computers (see Fig. 2). These modules communi-
cate with each other over the network. VP modules analyze
images captured by the cameras simulated in VWs and use
the results of this analysis to control and coordinate these

(a)

(b)

Figure 4: Starting with just five 3D human models (a), we
are able to generate many more pedestrians with unique
appearances by modifying the appearance textures (b).

cameras. Typically each camera has its own dedicated VP
module. A single instance of a SYNC module ensures that
all VW modules are in sync with each other. The next three
sections describe each of the three components of our virtual
vision simulator.

V. VIRTUAL WORLD ENGINE

VW is responsible for simulating virtual 3D scenes,
inhabited with self-animating pedestrians, automobiles, etc.
Specifically our VW models the top floor of an office
tower in downtown Toronto, populated with virtual humans
who work on this floor (Fig. 3). These virtual humans use
motion capture data and scripted way-points for locomotion
and exhibit highly-realistic movements. Virtual cameras de-
ployed in this environment can generate synthetic imagery
mimicking video captured by a typical surveillance camera.
Currently VW supports passive, wide Field-of-View (FOV)
and active Pan/Tilt/Zoom (PTZ) cameras. These cameras
can be easily configured and placed anywhere in the virtual
environment to prototype a camera network having the
desired configuration. The office floor is complete with floor-
to-ceiling panoramic windows looking out at the Toronto
skyline. VW supports dynamic shadows and subtle lighting
effects, such as sunlight filtering through glass windows.

A. Virtual Humans

The 3D office floor is inhabited by self-animating virtual
pedestrians. The pedestrians exhibit life-like movements
(walk, turn, run, stop, etc.) by relying upon motion cap-
ture data. These pedestrians move around the environment
following scripted paths, defined as a series of “reach way-
point” actions. Our approach provides the user with full
control over where each pedestrian is at any given time,
while at the same time keeps script complexity manageable.
Each pedestrian maintains a queue of these actions and
executes them in order.

Currently we have 3D models for three males and two
females; these are shown in Fig. 4(a). We are able to generate
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Figure 5: Transition between different locomotion states (walk to run, etc.) is accomplished by defining a motion graph over
motion capture data corresponding to different locomotion states. The motion graph minimizes the jumps when transitioning
from one state to the other.

many more humans with unique appearances by modifying
the textures available for these 5 models (Fig. 4(b)). This
allows us to realize scenes with far more individuals then is
otherwise possible. Transitions between different states, e.g.,
walk to turn left 90 degrees, is accomplished by defining a
motion graph on top of the motion capture data available for
each low-level state (Fig. 5) [7]. Locomotion states currently
available for each human are: 1) walk, 2) run, 3) stand idle,
4) about turn, 5) turn left 90 degrees, 6) turn right 90 degrees,
7) turn left 45 degrees, 8) turn right 45 degrees, 9) start
walking from idle, 10) come to a stop, 11) start running
from a walking gait, and 11) run to walk.

B. Virtual Cameras

Our system currently supports passive wide-FOV cameras
and active PTZ cameras. Clients can connect to these cam-
eras over the network. In that respect our simulated passive
and active cameras behave similarly to typical IP surveil-
lance cameras. Each camera exposes a control interface
through which a client can control the camera and request
images from this camera. Table. I lists the commands that
are available to access, configure, and control these cameras
over the network.

We have developed a high-throughput, light-weight pro-
tocol for accessing these simulated cameras. Our protocol
can be easily mapped to communication protocols used
by physical IP cameras, such as Pelco-D standard [8]. It
suggests that the camera networks developed within the
virtual environment can be easily ported to a physical camera
network.

VI. VISUAL ANALYSIS PIPELINE

We have developed pedestrian detection and tracking
routines that can be put together to construct a visual
analysis pipeline, capable of tracking individual pedestrians
in videos captured via passive wide-FOV and active PTZ
cameras. Currently we have implemented two pipelines: 1)
a pedestrian tracker capable of tracking multiple pedestrians

Camera
Type

Command Description

PTZ
&
wide-FOV

setResolution Set the resolution of the
image

getImage Gets the latest image
from the camera

PTZ

panLeft Pan left by θ degrees

panRight Pan right by θ degrees

tiltUp Tilt up by θ degrees

tiltDown Tilt down by θ degrees

zoomIn Zoom in by θ degrees

zoomOut Zoom out by θ degrees

default Reverts the camera to
its default settings

Table I: Simulated passive wide-FOV and active PTZ cameras
support a set of commands similar to those available in a typical
IP camera.

Figure 7: Our visual analysis pipeline is designed from
the ground up to work with both synthetic (right) and real
video (left) without any modifications. Consequently, our
vision pipeline faithfully mimics the performance of a vision
pipeline implemented on physical cameras.

in video feeds from passive wide-FOV cameras and 2) a
pedestrian tracker capable of tracking one or more “selected”
pedestrians in video feeds from active PTZ cameras (Fig. 6).
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(a) Visual analysis pipeline for tracking pedestrians in PTZ cameras.
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(b) Visual analysis pipeline for tracking pedestrians in wide-FOV cameras.

Figure 6: Visual analysis pipelines are realized as a collection of reusable vision routines.
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Figure 8: A stroke gesture is provided to select a pedestrian
to be tracked in active PTZ cameras. Appearance signatures
computed by passive wide-FOV cameras can also be used
to track individuals in active PTZ cameras.

These pipelines serve our purpose well, since we are cur-
rently only interested in camera networks comprising passive
wide-FOV and active PTZ cameras deployed in urban set-
tings for observing pedestrians in the scene. It is important
to note that our visual analysis pipelines work equally well
for synthetic imagery captured by virtual cameras and real
footage captured using physical cameras (Fig. 7). This will
make it easier to port camera networks implemented within

our virtual vision to real, physical camera networks.

A. Construction

Visual analysis pipelines are realized as a set of vision
routines (Fig. 6). Whenever a new image arrives, a frame
object is constructed. Every vision routine in the pipeline
operates upon this frame object in sequence, modifying the
frame object in the process. Vision routines that come after
can access results computed by previous routines through
this frame object. Consequently, the frame object provides
a communication and coordination mechanism between the
various vision routines that constitute a visual analysis
pipeline. E.g., a vision routine can dynamically check if
it needs to run a particular algorithm. This can lead to
efficiencies and more intelligent management of resources.

So far we have implemented the following set of computer
vision routines:

• Routines that produce appearance models of objects,
and routines that use these appearance models to con-
struct the back-projection image;

• Routines for foreground detection, using state-of-the-art
background subtraction algorithms;



• Routines for blob detection and tracking; and
• Routines for face and head detection.

B. Pedestrian Tracking

The pedestrian tracker for passive wide-FOV cameras
relies upon background subtraction to detect and subse-
quently track pedestrians. This tracker works completely
autonomously and does not require any human assistance.
After a few minutes of training the tracker is able to pick
out and track pedestrians present in the scene. It also con-
structs appearance based signatures of the pedestrians being
tracked. Background subtraction, however, is not available
for active PTZ cameras since the background changes as
the camera parameters are adjusted. The pedestrian tracker
developed for active PTZ cameras, therefore, employs an
appearance based signature to track one or more pedestrians.
Appearance signatures of pedestrians that need to be tracked
are available from the wide-FOV cameras. We have also
developed a stroke-based interaction mechanism that allows
a user to quickly identify (select) the person to be tracked
in the video feed from an active PTZ camera (Fig. 8).

Our visual analysis pipelines are able to track individual
pedestrians reasonably well in low density environments,
such as office buildings. These will not work in situations
involving a large number of pedestrians crammed together in
a small physical space, such as a subway station during rush
hours. Nevertheless, these visual analysis pipelines enable us
to study camera control and coordination strategies in our
virtual vision simulator.

VII. SYNCHRONIZATION UNIT

Fig. 2 depicts a possible configuration of our virtual
vision simulator. Each VW is responsible for simulating
the visually and behaviorally realistic 3D environments
within which virtual cameras are deployed. VP modules are
responsible for analyzing video data captured by simulated
cameras. VPs are also able to control the simulated cameras.
For example, a VP can choose to pan a PTZ camera
to follow an individual of interest. Additionally, VPs are
also able to communicate with each other (via the VW or
SYNC); e.g., during camera handoffs, etc. VWs and VPs
are spread over multiple computers and we use a SYNC
unit to ensure that all VWs evolve in lockstep. This ensures
that images captured by various cameras and commands
issued to these cameras are perfectly synchronized across the
whole (simulated) camera network no matter the speed of the
computer hosting a particular VW or VP. It also gives us full
control over the simulation clock allowing us to easily test
cameras with different framerates as well as camera routines
that have not been optimized to run in realtime. Of course it
is straightforward to simulate asynchronous image capture
and processing.

Fig. 9 illustrates how the SYNC unit communicates with
multiple VW modules. SYNC unit begins by registering
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Figure 9: Communication between VWs and SYNC unit.

every VW in its database. Next, SYNC unit, which keeps
track of the global clock, sends step signals to each VW
unit to take a fixed number, say n, of simulation steps. The
next step is only issued once every VW has successfully
completed n simulation steps. This ensures that the internal
clocks of two VWs are never more than n simulation steps
apart. VWs update their clocks upon receiving the sync
message.

To create a smart camera network, it is critical that the
cameras be able to communicate with each other. There are
two ways this can be achieved using our system. When
both the sender and the recipient cameras reside on the
same VW, the message can be transferred without going
through the network interface. However, if the recipient
camera is being simulated on a different VW, the message
is sent to the SYNC unit which can then pass the message
on to the appropriate VW. Alternately our system allows
anyone to implement their own method of communication
that bypasses VW and SYNC entirely.

VIII. EXAMPLES OF CAMERA NETWORKS

Here we briefly describe three prototype camera networks
that were deployed and studied within our virtual vision
systems.

A. Multi-tasking PTZ Cameras

The first project focuses on developing a system that
automatically tunes the sensing parameters of PTZ cameras
in response to the scene activity, choosing to capture close-
up video when the number of pedestrians present in the
scene is low and electing to capture lower-resolution video
as the number of pedestrians increases, thus always keeping
every pedestrian in view [9]. These cameras enable the
video surveillance system to intelligently respond to scene
complexity, automatically capturing close-up imagery of the
pedestrians present in the scene when possible, and behaving
as wide-FOV cameras when the number of pedestrians



increases. Fig. 10 shows a multi-tasking PTZ camera: the
PTZ camera is able to capture higher resolution video of
the pedestrians present in the scene when there are only a
few pedestrians present; however, it begins to behave like
a wide-FOV camera as the pedestrians present in the scene
spread out and move away from the camera.

(a) (b)

VWPTZ Camera VP
Indicates
Computer

(c)

Figure 10: PTZ cameras automatically decide how best to
observe a scene. (a) When possible, the PTZ camera selects
a higher zoom to capture higher resolution images of the
individuals present in the scene. (b) As the individuals spread
out and move away from the camera, the PTZ camera selects
a lower zoom setting to keep everybody in view, albeit at a
much lower resolution. (c) Virtual vision simulator consisted
of one VW and one VP module, spread over two computers.

B. Learning Proactive Control Strategies

The second project focuses on developing a PTZ camera
network that learns proactive control strategies by generaliz-
ing and storing the results of a reasoning process (Fig. 11).
The reasoning process—which considers both immediate
and far-reaching consequences of different camera assign-
ments when constructing a “plan” most likely to succeed
(in a probabilistic sense) at the current observation task(s)—
is capable of performing camera assignments and handoffs
in order to provide persistent coverage of a region. The
results of this reasoning activity are then stored as rules in
a production system [10]. Later when a similar situation is
encountered, the production system bypasses the reasoning
process and performs camera assignments. Initially, the
camera network relies mostly on the reasoning process; over
time, however, camera assignments become instinctive.

C. Camera Handoffs

Fig. 12 illustrates camera handoff between a passive
wide-FOV camera and a nearby active PTZ camera. In
this case, a passive camera detected the individual through
background subtraction and began tracking this individual.
Once it detected that the individual is about to leave its field-
of-view, the passive camera sent the appearance signature

(a)
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Camera

PTZ Camera
VW

VP

VP

Indicates Computer

PTZ CameraVP

VP PTZ Camera

(b)

Figure 11: (a) The three rows show three cameras observing
two pedestrians as they cross each other on their way to
the opposite sides of the lobby. The three cameras are
able to perform handoff while keeping both pedestrians in
view. This is achieved through a reasoning mechanism that
considers both short-term and long-term consequences of
camera assignments. (b) Virtual vision simulator consisted of
one VW and four VP modules, spread over three computers.

for this individual to a nearby active camera. The active
PTZ camera then is able to track the individual using the
appearance signature sent to it by the passive camera.

Passive Wide-FOV CameraActive PTZ Camera

(a)
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Camera

PTZ Camera
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VP

VP
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Figure 12: A passive wide-FOV camera hands off a pedes-
trian to a PTZ camera by sending it the pedestrians appear-
ance signature. (b) Virtual vision simulator consisted of one
VW and two VP modules, spread over two computers.



Figure 13: A view of our virtual vision simulator showing
an outdoor scene.

IX. CONCLUSION

Reality Emulators—visually and behaviorally realistic en-
vironments, inhabited with life-like flora and fuana—have
the potential to revolutionize camera networks research.
These synthetic environments can serve as software lab-
oratories within which simulated camera networks can be
deployed, tested and evaluated. Inspired by this vision, here
we present a 3D environment, along with the necessary
camera models, communication infrastructure, and computer
vision routines, that can be beneficial for camera networks
research. With the ability to quickly change the scene, the
number of pedestrians and the locations and properties of
the cameras, it is easy for researchers to study their camera
networks in a variety of settings (See Fig. 13).

We are currently working to improve the quality of our
virtual pedestrians so that they can better interact with each
other and their surroundings. We also plan to implement
the Pelco-D protocol for the simulated cameras, to further
facilitate the transfer of camera networks algorithms from
our simulated environment to physical camera networks.
Finally, we hope to improve the quality of the imagery
produced by our simulator by adding support for lens effects
such as depth of field, noise and motion blur.
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